Build, Run, and Write SMIPS Programs

CS250 Tutorial 3 (Version 092509a)
September 25, 2009
Yunsup Lee

In this tutorial you will gain experience using the SMIPS toolchain to assemble and compile pro-
grams for the SMIPSv2 processor which you will implement in lab 2 and 3. You will also learn how
to run the programs on the SMIPSv2 ISA simulator and use the test macros to write your own test
programs.

The SMIPS toolchain is a standard GNU cross compiler toolchain ported for SMIPS. You will be
using smips-{gcc,as,1d} to compile, assemble, and link your source files. Then you will run the
compiled binary on the SMIPSv2 ISA simulator to figure out whether or not your binary runs
as intended. The SMIPSv2 ISA simulator might report errors because of the SMIPS compiler
generating instructions that are not defined in the SMIPSv2 ISA. You need to carefully write C
code to avoid these instructions. Please refer SMIPS Processor Specification for more information
about the ISA.

Unfortunately, your SMIPS Verilog test harness used in lab 2 and 3 cannot read SMIPS binaries
directly, so you must use additional tools to convert the SMIPS binary into a usable format. You
will also use the smips-objdump program which takes the SMIPS binary as input and produces
a textual listing of the instructions and data contained in the binary. Then you will run the
objdump2vmh.pl Perl script to convert this text objdump into a Verilog Memory Hex (VMH) file
which the Verilog test harness can read into its magic memory.

Figure 1 shows how everything fits together.

Getting started

Before using the SMIPS toolchain you must run the course setup script with the following command.
% source “cs250/tools/cs250.bashrc

To begin this tutorial you will need to copy SMIPS test assembly source files and C benchmark
source files from the course locker.

% mkdir tut3

% cd tut3

% cp -R “cs250/smips-tests/ .
% cp -R “cs250/smips-bmarks/ .

CS250 Tutorial 3 (Version 092509a), Fall 2009

ASM C
Source Source
Code Code

=
!

SMIPS
Binary

T,

[smips—objdump } [smips—test-run }

i

Obj
Dump

i

[objdump2vmh.pl }

i

VMH

Figure 1: SMIPS Assembler and Compiler Toolchain

CS250 Tutorial 3 (Version 092509a), Fall 2009 3

Building SMIPS Test Assembly Programs

You will begin by assembling the smipsvl_simple.S assembly test program. Take a look at the
assembly in smips-tests/smipsvl_simple.S and notice that this test only has two instructions.
You can use the following commands to generate a binary file, and a VMH file from the assembly
file.

% cd smips-tests
% pwd
tut3/smips-tests
% smips-gcc -02 -G 0 -nostdlib -nostartfiles smipsvl_simple.S -o smipsvl_simple.S.bin
% smips-objdump --disassemble-all --disassemble-zeroes \
--section=.text --section=.data smipsvl_simple.S.bin > smipsvl_simple.S.dump
% objdump2vmh.pl smipsvl_simple.S.dump smipsvl_simple.S.vmh

Compare the original smipsvl_simple.S file to the generated smipsvl_simple.S.dump. Using a
combination of the assembly file and the objdump file you can get a good feel for what the test
programs are supposed to do and what instructions are supposed to be executed.

You can use the makefile to automate the process of building SMIPS test assembly programs. The
following commands will clean the build directory and then build the desired smipsvl_simple.S.vmh
file as well as all required intermediate files.

% rm -f smipsvl_simple.*
% make smipsvl_simple.S.vmh

Verify that the corresponding SMIPS binary and objdump file were generated.

The smipsvl_simple.S test program was located locally in the tut3/smips-tests directory. There
are globally installed SMIPS assembly test programs located in “cs250/install/smips-tests
which you can use for lab 2 and 3 and projects. The following command will build all of the
assembly tests.

% make

Running SMIPS Test Assembly Programs on the ISA Simulator

Now run your compiled SMIPS binary on the SMIPSv2 ISA simulator.

% pwd

tut3/smips-tests

% smipsv2-test-run smipsvl_simple.S.bin

CYC: 0 [pc=00001000] [inst=24020001] R[r 0=00000000] W[r2=00000001] addiu $vO0,$zero,1
CYC: 1 [pc=00001004] [inst=4082a800] R[r 2=00000001] mtcO $vO,$s5

**%x PASSED **%

You can see the cycle count, pc, instruction, register accesses, and the disassembled instruction.
The first register of the instruction mtcO tells you whether or not the test passed or not. Number
1 is used to indicate that the test passed, while the number bigger than 1 points you to the failed
testcase number. You can also use the automated makefile to run through all the binaries.

CS250 Tutorial 3 (Version 092509a), Fall 2009 4

% make run

PASSED

[] smipsvl_addiu.S.out
[PASSED] smipsvl_bne.S.out

[PASSED] smipsvl_simple.S.out
[PASSED] smipsvl_lw.S.out

[PASSED] smipsvl_sw.S.out

[PASSED] smipsv2_addiu.S.out
[PASSED] smipsv2_addu.S.out

[PASSED] smipsv2_andi.S.out

[PASSED] smipsv2_xor.S.out

Writing SMIPS Test Assembly Programs

Take a look at test_macro.h. You can see helper macros which are used in various test assembly
programs. Brief explanation of each macro follows.

e TEST CASE(testnum,testreg,correctval,code...)- This macro defines a test case. Runs
the code, and loads testnum to register $30. Then checks if the value of testreg is
correctval. If not, the program will jump to fail which is defined in TEST_PASSFAIL.

e TEST_INSERT NOPS_[0-10]- This macro defines nops. The number in macro the indicates
the number of nops to be inserted.

e TEST_IMM_OP(testnum,inst,result,vall,imm)- Basic test for immediate instructions. Loads
vall to $2, executes inst $4,$2,imm and checks if the result and $4 match.

e TEST_IMM_SRC1_EQ_DEST(testnum,inst,result,vall,imm)- Similar test to TEST_IMM_OP, though,
executes inst $2,$2,imm and checks if the result and $2 match.

e TEST_IMM DEST BYPASS(testnum,nop_cycles,inst,result,vall,imm)- Destination regis-
ter bypass test for immediate instructions. Loads vall to $2, executes inst $4,$2,imm
then reads $4 from the next instruction which is separated by nop_cycles.

e TEST IMM SRC1 BYPASS(testnum,nop cycles,inst,result,vall,imm)- Source register by-
pass test for immediate instructions. Loads vall to $2, waits for nop_cycles, then executes
the instruction, and checks.

e TEST_RR_OP(testnum,inst,result,vall,val2)- Basic test for register register instructions.
Loads vall to $2, val2 to $3, executes inst $4,$2,$3 and checks if the result and $4
match.

e TEST_RR_SRC1_EQ_DEST(testnum,inst,result,vall,val2)- Similar test to TEST_RR_OP, though,
executes inst $2,$2,$3 and checks if the result and $2 match.

e TEST_RR_SRC2_EQ_DEST (testnum,inst,result,vall,val2)- Similar test to TEST_RR_OP, though,
executes inst $3,$2,$3 and checks if the result and $3 match.

e TEST_RR_SRC12_EQ_DEST(testnum,inst,result,vall)- Similar test to TEST_RR_OP, though,
loads vall to $2, executes inst $2,$2,$2 and checks if the result and $2 match.

e TEST RR DEST BYPASS(testnum,nop._cycles,inst,result,vall,val2)- Destination regis-
ter bypass test for register register instructions. Loads vall to $2, val2 to $3, executes
inst $4,$2,$3 then reads $4 from the next instruction which is separated by nop_cycles.

CS250 Tutorial 3 (Version 092509a), Fall 2009 5

e TEST RR_SRC12 BYPASS(testnum,srcl nops,src2nops,inst,result,vall,val2)- Source
register bypass test for register register instructions. Loads vall to $2, waits srcl nops,
loads val2 to $3, waits src2_nops, then executes instruction, and checks.

e TEST RR_SRC21 BYPASS(testnum,src nops,src2nops,inst,result,vall,val2)- Similar to
TEST_RR_SRC12 BYPASS, though, loads val2 to $3 before loading vall to $2.

e TEST_LD_OP(testnum,inst,result,offset,base)- Basic test for load instructions. Loads
base to $2, executes inst $4,offset($2) and checks if the result and $4 match.

e TEST_ST_OP(testnum,load_inst,store_inst,result,offset,base)- Basic test for store in-
structions. Loads base to $2, result to $3, executes store_inst $3,offset($2) and
load_inst $4,offset($2) and checks if the result and $4 match.

e TEST LD DEST BYPASS(testnum,nop._cycles,inst,result,offset,base)- Destination reg-
ister bypass test for load instructions. Loads base to $2, executes inst $4,offset ($2), then
reads $4 from the next instruction which is separated by nop_cycles.

e TEST LD _SRC1 BYPASS(testnum,nop._cycles,inst,result,offset,base)- Source register by-
pass test for load instructions. Loads base to $2, waits nop_cycles, then executes instruction,
and checks.

e TEST_ST_SRC12_BYPASS(testnum,srcl nops,src2mnops,load_inst,store_inst,results,offset,base)-
Source register bypass test for store instructions. Loads result to $2, waits for srcl nops,
loads base to $3, waits for src2 nops, executes the store_instruction and the load instruction,
then checks if the result and $4 match,

e TEST_ST_SRC21_BYPASS(testnum,srcl nops,src2mnops,load_inst,store_inst,results,offset,base)-
Similar to TEST_ST_SRC12_BYPASS, though, loads base to $3 before loading result to $2.

e TEST_BR1_0P_TAKEN (testnum,inst,vall)- Basic taken test for branch instructions with one
input. Loads vall to $2, then executes inst $2,pass. If branch is not-taken the program
will jump to fail which is defined in TEST_PASSFAIL.

e TEST_BR1_OP_NOTTAKEN(testnum,inst,vall)- Basic not-taken test for branch instructions
with one input. Loads vall to $2, then executes inst $2,fail. If branch is taken the
program will jump to fail which is defined in TEST_PASSFAIL.

e TEST BR1_SRC1 BYPASS(testnum,nop_cycles,inst,vall)- Source register bypass test for
branch instructions with one input. Loads vall to $2, waits for nop_cycles, then executes
branch instruction.

e TEST_BR2_OP_TAKEN (testnum,inst,vall,val2)- Basic taken test for branch instruction with
two inputs. Loads vall to $2, val2 to $3, then executes inst $2,$3,pass. If branch is not-
taken the program will jump to fail which is defined in TEST_PASSFAIL.

e TEST_BR2_OP_NOTTAKEN(testnum, inst,vall,val2)- Basic not-taken test for branch instruc-
tion with two inputs. Loads vall to $2, val2 to $3, then executes inst $2,$3,fail. If
branch is taken the program will jump to fail which is defined in TEST PASSFAIL.

e TEST BR2 _SRC12 BYPASS(testnum,srcl nops,src2 nops,inst,vall,val2)- Source register
bypass test for branch instruction with two inputs. Loads vall to $2, waits for srcl nops,
loads val2 to $3, waits for src2 nops, executes branch instruction.

e TEST BR2_SRC21 BYPASS(testnum,srcl nops,src2 nops,inst,vall,val2)- This macro is
similar to TEST_BR2_SRC12_BYPASS, though, loads val2 to $3 before loading vall to $2.

e TEST_JR_SRC1_BYPASS(testnum,nop_cycles,inst)- Loads an address to $7, waits for nop_cycles,
then executes jump register instruction.

CS250 Tutorial 3 (Version 092509a), Fall 2009 6

e TEST_JALR SRC1 BYPASS(testnum,nop cycles,inst)- Similar to TEST_JR_SRC1 BYPASS, though,
executes jump and link register instruction.

e TEST_PASSFAIL - This macro define what do to when success or fail. SMIPSv2 defines this
macro using mtcO.

Open smips-test/smipsv2 addu.S to see how the macros are used.

TEST_RR_OP(2, addu, 0x00000000, 0x00000000, 0x00000000);
TEST_RR_OP(3, addu, 0x00000002, 0x00000001, 0x00000001) ;
TEST_RR_OP(4, addu, 0x0000000a, 0x00000003, 0x00000007);

TEST_RR_OP(5, addu, Oxffff8000, 0x00000000, Oxffff8000);
TEST_RR_OP(6, addu, 0x80000000, 0x80000000, 0x00000000);
TEST_RR_OP(7, addu, 0x7ff£8000, 0x80000000, Oxffff8000);

TEST_RR_OP(8, addu, 0x00007fff, 0x00000000, 0x00007fff);
TEST_RR_OP(9, addu, Ox7fffffff, Ox7fffffff, 0x00000000);
TEST_RR_OP(10, addu, 0x80007ffe, Ox7fffffff, 0x00007fff);

TEST_RR_OP(11, addu, 0x80007fff, 0x80000000, 0x00007fff);
TEST_RR_OP(12, addu, Ox7fff7fff, Ox7fffffff, Oxfff£8000);

TEST_RR_OP(13, addu, Oxffffffff, 0x00000000, Oxffffffff);
TEST_RR_OP(14, addu, 0x00000000, Oxffffffff, 0x00000001);
TEST_RR_OP(15, addu, Oxfffffffe, Oxffffffff, Oxffffffff);

TEST_RR_SRC1_EQ_DEST(16, addu, 24, 13, 11);
TEST_RR_SRC2_EQ_DEST(17, addu, 25, 14, 11);
TEST_RR_SRC12_EQ_DEST(18, addu, 26, 13);

TEST_RR_DEST_BYPASS(19, 0, addu, 24, 13, 11);
TEST_RR_DEST_BYPASS(20, 1, addu, 25, 14, 11);
TEST_RR_DEST_BYPASS(21, 2, addu, 26, 15, 11);

TEST_RR_SRC12_BYPASS(22, 0, 0, addu, 24, 13, 11);
TEST_RR_SRC12_BYPASS(23, 0, 1, addu, 25, 14, 11);

CS250 Tutorial 3 (Version 092509a), Fall 2009 7

TEST_RR_SRC12_BYPASS(24, 0, 2, addu, 26, 15, 11);
TEST_RR_SRC12_BYPASS(25, 1, 0, addu, 24, 13, 11);
TEST_RR_SRC12_BYPASS(26, 1, 1, addu, 25, 14, 11);
TEST_RR_SRC12_BYPASS(27, 2, 0, addu, 26, 15, 11);
TEST_RR_SRC21_BYPASS(28, 0, 0, addu, 24, 13, 11);
TEST_RR_SRC21_BYPASS(29, 0, 1, addu, 25, 14, 11);
TEST_RR_SRC21_BYPASS(30, 0, 2, addu, 26, 15, 11);
TEST_RR_SRC21_BYPASS(31, 1, 0, addu, 24, 13, 11);
TEST_RR_SRC21_BYPASS(32, 1, 1, addu, 25, 14, 11);
TEST_RR_SRC21_BYPASS(33, 2, 0, addu, 26, 15, 11);

TEST_PASSFAIL

Building SMIPS C Benchmark Programs

Go ahead and build the SMIPS binary and the corresponding VMH file for the quicksort benchmark.

% cd ../smips-bmarks/qgsort

% pwd

tut3/smips-bmarks/qgsort

% smips-gcc -02 -G O -nostdlib -nostartfiles -DPREALLOCATE=1 -DHOST_DEBUG=0 \
-c -I. gsort_main.c -o gsort_main.o

% smips-1d “cs250/tools/smips-xcc/mips-elf/lib/crtl.o gsort_main.o \
-0 gsort.smips.bin

% smips-objdump --disassemble-all --disassemble-zeroes \
--section=.text --section=.data gsort.smips.bin > gsort.smips.dump

% objdump2vmh.pl gsort.smips.dump gsort.smips.vmh

Search for symbol sort in gsort.smips.dump. You can see how the compiler transformed the C
sort function into instructions.

For debugging purposes, you might want to compile your code natively. There is no reason why
you can’t do that because the benchmark is written in C. However, there are some SMIPS specific
instructions embedded in the benchmark, for example, mtcO instruction would not run on an
x86 machine. Take a close look at gsort main.c. SMIPS specific stuff are already wrapped by
HOST DEBUG. You just need to define HOST_DEBUG to 1 when compiling.

% gcc -DPREALLOCATE=0 -DHOST_DEBUG=1 gsort_main.c -o gsort.host.bin

You can use the makefile to automate build process for SMIPS binaries. There are globally installed
SMIPS C benchmarks located in “cs250/install/smips-bmarks which are already compiled for
lab 2 and 3.

% cd ..

% pwd
tut3/smips-bmarks
% make

CS250 Tutorial 3 (Version 092509a), Fall 2009

Running SMIPS C Benchmark Programs on the ISA Simulator

Now run the compiled benchmarks on the SMIPSv2 ISA simulator. Go ahead an try the automated
run as well.

% cd

% pwd

gsort

tut3/smips-bmarks/qsort
% smipsv2-test-run gsort.

CYC:
CYC:
CYC:
CYC:
CYC:
CYC:
CYC:
CYC:
CYC:
CYC:

19278
19279
19280
19281
19282
19283
19284
19285
19286
19287

% PASSED
%hocd ..
% make run-smips

[pc=00001104]
[pc=00001108]
[pc=0000110c]
[pc=00001110]
[pc=00001114]
[pc=000012ac]
[pc=000012b0]
[pc=000012b4]
[pc=000012d4]
[pc=000012d8]
k%%

smips.bin

[inst=ac470000]
[inst=25080004]
[inst=254a0004]
[inst=1060ffeb]
[inst=11e00065]
[inst=8£fb000d4]
[inst=27bd00d8]
[inst=03e00008]
[inst=24020001]
[inst=40825000]

[PASSED] median.smips.out
[PASSED] gsort.smips.out
[PASSED] towers.smips.out
[PASSED] vvadd.smips.out

R[r 2=00001664]
R[r 8=00001664]
R[r10=00001660]
R[r 3=00000001]
R[r15=00000000]
R[r29=0001££18]
R[r29=0001£f£18]
R[r31=00001244]
R[r 0=00000000]
R[r 2=00000001]

R[r 7=00000320]
W[r 8=00001668]
W[r10=00001664]
R[r 0=00000000]
R[r 0=00000000]
W[r16=00c47a40]
W[r29=0001f££0]
jr $ra

W[r 2=00000001]
mtcO $vO0,$t2

sw $a3,0($v0)
addiu $t0,$t0,4
addiu $t2,$t2,4
beq $vi,$zero,-21
beq $t7,%zero,101
1w $s0,212($sp)
addiu $sp,$sp,216

addiu $vO0,$zero,1

You can also run the benchmark which is compiled natively. The native run is automated as well.

% cd gsort

% pwd

tut3/smips-bmarks/qgsort
% ./qsort.host.bin

979 979 981 985 985 989 989 997 997 998
*x*kx PASSED %%
% cd ..
% make run-host

L e T e O s T s T

PASSED 1]
PASSED]
PASSED 1]
PASSED]

median.host.out

gsort.host.out

towers.host.out

vvadd.host.out

CS250 Tutorial 3 (Version 092509a), Fall 2009 9

Writing SMIPS C Benchmark Programs

Writing benchmark programs for SMIPS is similar with writing plain C programs. However when
you are coding, keep in mind that you also want to test the code natively. Try to guard your
SMIPS specific parts with a macro named HOST_DEBUG. Another thing to keep in mind is that since
you are running the compiled code on the SMIPSv2 processor, some instructions generated by the
compiler might not be in the SMIPSv2 ISA. Keep your memory accesses aligned by 4 bytes, and
avoid arithmetic that is not defined in the ISA. Try to write your own function that emulates the
functionality. For example, write a multiply function which only uses adds and shifts. Then call
the multiply function whenever you need to do a multiplication. Before you test your program on
the processor, always try to verify the compiled binary against the ISA simulator first!

Review

The following sequence of command will setup the SMIPS toolchain, copy the source files, build
the binaries, run all tests, and report the results.

% source ~cs250/tools/cs250.bashrc
% mkdir tut3

% cd tut3

% cp -R “cs250/smips-tests/ .

% cp -R "cs250/smips-bmarks/ .

% cd smips-tests

% make run

% cd ../smips-bmarks

% make run-host

% make run-smips

Acknowledgements

Many people have contributed to versions of this tutorial over the years. The tutorial was origi-
nally developed for CS250 VLSI Systems Design course at University of California at Berkeley by
Yunsup Lee. Contributors include: Krste Asanovi¢, Christopher Batten, John Lazzaro, and John
Wawrzynek. Versions of this tutorial have been used in the following courses:

e (CS250 VLSI Systems Design (2009) - University of California at Berkeley

