
SMIPS Processor Specification

CS250 VLSI Systems Design

September 25, 2009

SMIPS is the version of the MIPS instruction set architecture (ISA) we’ll be using for the proces-
sors we implement in 6.884. SMIPS stands for Simple MIPS since it is actually a subset of the full
MIPS ISA. The MIPS architecture was one of the first commercial RISC (reduced instruction set
computer) processors, and grew out of the earlier MIPS research project at Stanford University.
MIPS stood for “Microprocessor without Interlocking Pipeline Stages” and the goal was to sim-
plify the machine pipeline by requiring the compiler to schedule around pipeline hazards including
a branch delay slot and a load delay slot. Today, MIPS CPUs are used in a wide range of devices:
Casio builds handheld PDAs using MIPS CPUs, Sony uses two MIPS CPUs in the Playstation-2,
many Cisco internet routers contain MIPS CPUs, and Silicon Graphics makes Origin supercom-
puters containing up to 512 MIPS processors sharing a common memory. MIPS implementations
probably span the widest range for any commercial ISA, from simple single-issue in-order pipelines
to quad-issue out-of-order superscalar processors.

There are several variants of the MIPS ISA. The ISA has evolved from the original 32-bit MIPS-I
architecture used in the MIPS R2000 processor which appeared in 1986. The MIPS-II architecture
added a few more instructions while retaining a 32-bit address space. The MIPS-II architecture
also added hardware interlocks for the load delay slot. In practice, compilers couldn’t fill enough
of the load delay slots with useful work and the NOPs in the load delay slots wasted instruction
cache space. (Removing the branch delay slots might also have been a good idea, but would have
required a second set of branch instruction encodings to remain backwards compatible.) The MIPS-
III architecture debuted with the MIPS R4000 processor, and this extended the address space to
64 bits while leaving the original 32-bit architecture as a proper subset. The MIPS-IV architecture
was developed by Silicon Graphics to add many enhancements for floating-point computations and
appeared first in the MIPS R8000 and later in the MIPS R10000. Over the course of time, the MIPS
architecture has been widely extended, occasionally in non-compatible ways, by different processor
implementors. MIPS Technologies, who now own the architecture, are trying to rationalize the
architecture into two broad groupings: MIPS32 is the 32-bit address space version, MIPS64 is
the 64-bit address space version. There is also MIPS16, which is a compact encoding of MIPS32
that only uses 16 bits for each instruction. You can find a complete description of the MIPS
instruction set at the MIPS Technologies web site [2] or in the book by Kane and Heinrich [3].
The book by Sweetman also explains MIPS programming [4]. Another source of MIPS details and
implementation ideas is “Computer Organization and Design: The Hardware/Software Interface”
[1].

The SMIPS CPU implements a subset of the MIPS32 ISA. It does not include floating point
instructions, trap instructions, misaligned load/stores, branch and link instructions, or branch
likely instructions. There are three SMIPS variants which are discussed in more detail at the
end of this document. SMIPSv1 has only five instructions and it is mainly used as a toy ISA for
instructional SMIPSv2 includes the basic integer, memory, and control instructions. It excludes
multiply instructions, divide instructions, byte/halfword loads/stores, and instructions which cause
arithmetic overflows. Neither SMIPSv1 or SMIPSv2 support exceptions, interrupts, or most of the
system coprocessor. SMIPSv3 is the full SMIPS ISA and includes everything described in this
document.

SMIPS Specification, Fall 2009 2

1 Basic Architecture

Figure 1 shows the programmer visible state in the CPU. There are 31 general purpose 32-bit
registers r1–r31. Register r0 is hardwired to the constant 0. There are three special registers
defined in the architecture: two registers hi and lo are used to hold the results of integer multiplies
and divides, and the program counter pc holds the address of the instruction to be executed next.
These special registers are used or modified implicitly by certain instructions.

SMIPS differs significantly from the MIPS32 ISA in one very important respect. SMIPS does not
have a programmer-visible branch delay slot. Although this slightly complicates the control logic
required in simple SMIPS pipelines, it greatly simplifies the design of more sophisticated out-of-
order and superscalar processors. As in MIPS32, Loads are fully interlocked and thus there is no
programmer-visible load delay slot.

Multiply instructions perform 32-bit×32-bit → 64-bit signed or unsigned integer multiplies placing
the result in the hi and lo registers. Divide instructions perform a 32-bit/32-bit signed or unsigned
divide returning both a 32-bit integer quotient and a 32-bit remainder. Integer multiplies and
divides can proceed in parallel with other instructions provided the hi and lo registers are not
read.

The SMIPS CPU has two operating modes: user mode and kernel mode. The current operating
mode is stored in the KUC bit in the system coprocessor (COP0) status register. The CPU
normally operates in user mode until an exception forces a switch into kernel mode. The CPU
will then normally execute an exception handler in kernel mode before executing a Return From
Exception (ERET) instruction to return to user mode.

r31
r30

pc

hi
lo

r1
r0

031 031

031

General Purpose Registers Program Counter

Multiply/Divide Registers

Figure 1: SMIPS CPU registers

SMIPS Specification, Fall 2009 3

2 System Control Coprocessor (CP0)

The SMIPS system control coprocessor contains a number of registers used for exception handling,
communication with a test rig, and the counter/timer. These registers are read and written using
the MIPS standard MFC0 and MTC0 instructions respectively. User mode can access the system
control coprocessor only if the cu[0] bit is set in the status register. Kernel mode can always
access CP0, regardless of the setting of the cu[0] bit. CP0 control registers are listed in Table 1.

Number Register Description

0–7 unused.
8 badvaddr Bad virtual address.
9 count Counter/timer register.

10 unused.
11 compare Timer compare register.
12 status Status register.
13 cause Cause of last exception.
14 epc Exception program counter.

15–19 unused.
20 fromhost Test input register.
21 tohost Test output register.

22–31 unused.

Table 1: CP0 control registers.

2.1 Test Communication Registers

31 8 7 0

0 fromhost

24 8

31 8 7 0

0 tohost

24 8

Figure 2: Fromhost and Tohost Register Formats.

There are two registers used for communicating and synchronizing with an external host test
system. Typically, these will be accessed over a scan chain. The fromhost register is an 8-bit read
only register that contains a value written by the host system. The tohost register is an 8-bit
read/write register that contains a value that can be read back by the host system. The tohost

register is cleared by reset to simplify synchronization with the host test rig. Their format is shown
in Figure 2.

SMIPS Specification, Fall 2009 4

2.2 Counter/Timer Registers

31 0

count

32

31 0

compare

32

Figure 3: Count and Compare Registers.

SMIPS includes a counter/timer facility provided by the two coprocessor 0 registers count and
compare. Both registers are 32 bits wide and are both readable and writeable. Their format is
shown in Figure 3.

The count register contains a value that increments once every clock cycle. The count register is
normally only written for initialization and test purposes. A timer interrupt is flagged in ip7 in
the cause register when the count register reaches the same value as the compare register. The
interrupt will only be taken if both im7 and iec in the status register are set. The timer interrupt
flag in ip7 can only be cleared by writing the compare register. The compare register is usually
only read for test purposes.

2.3 Exception Processing Registers

A number of CP0 registers are used for exception processing.

2.3.1 Status Register

31 28 27 16 15 8 7 6 5 4 3 2 1 0

CU 0 IM 0 KUo IEo KUp IEp KUc IEc

4 12 8 2 1 1 1 1 1 1

Figure 4: Status Register Format

The status register is a 32-bit read/write register formatted as shown in Figure 4. The status

register keeps track of the processor’s current operating state.

The CU field has a single bit for each coprocessor indicating if that coprocessor is usable. Bits
29–31, corresponding to coprocessor’s 1, 2, and 3, are permanently wired to 0 as these coprocessors
are not available in SMIPS. Coprocessor 0 is always accessible in kernel mode regardless of the
setting of bit 28 of the status register.

The IM field contains interrupt mask bits. Timer interrupts are disabled by clearing im7 in bit 15.
External interrupts are disabled by clearing im6 in bit 14. The other bits within the IM field are
not used on SMIPS and should be written with zeros. Table 4 includes a listing of interrupt bit
positions and descriptions.

SMIPS Specification, Fall 2009 5

The KUc/IEc/KUp/IEp/KUo/IEo bits form a three level stack holding the operating mode (ker-
nel=0/user=1) and global interrupt enable (disabled=0/enabled=1) for the current state, and the
two states before the two previous exceptions.

When an exception is taken, the stack is shifted left 2 bits and zero is written into KUc and IEc.
When a Restore From Exception (RFE) instruction is executed, the stack is shifted right 2 bits,
and the values in KUo/IEo are unchanged.

2.3.2 Cause Register

31 16 15 8 7 6 2 1 0

0 IP 0 ExcCode 0

16 8 1 5 2

Figure 5: Cause Register Format

The cause register is a 32-bit register formatted as shown in Figure 5. The cause register contains
information about the type of the last exception and is read only.

The ExcCode field contains an exception type code. The values for ExcCode are listed in Table 2.
The ExcCode field will typically be masked off and used to index into a table of software exception
handlers.

ExcCode Mnemonic Description

0 Hint External interrupt
2 Tint Timer interrupt
4 AdEL Address or misalignment error on load
5 AdES Address or misalignment error on store
6 AdEF Address or misalignment error on fetch
8 Sys Syscall exception
9 Bp Breakpoint exception

10 RI Reserved instruction exception
12 Ov Arithmetic Overflow

Table 2: Exception Types.

If the Branch Delay bit (BD) is set, the instruction that caused the exception was executing in a
branch delay slot and epc points to the immediately preceding branch instruction. Otherwise,

The IP field indicates which interrupts are pending. Field ip7 in bit 15 flags a timer interrupt.
Field ip6 in bit 14 flags an external interrupt from the host test setup. The other IP bits are unused
in SMIPS and should be ignored when read. Table 4 includes a listing of interrupt bit positions
and descriptions.

SMIPS Specification, Fall 2009 6

2.3.3 Exception Program Counter

31 0

epc

32

Figure 6: EPC Register.

Epc is a 32-bit read only register formatted as shown in Figure 6. When an exception occurs, epc
is written with the virtual address of the instruction that caused the exception.

2.3.4 Bad Virtual Address

31 0

badvaddr

32

Figure 7: Badvaddr Register.

Badvaddr is a 32-bit read only register formatted as shown in Figure 7. When a memory address
error generates an AdEL or AdES exception, badvaddr is written with the faulting virtual address.
The value in badvaddr is undefined for other exceptions.

SMIPS Specification, Fall 2009 7

3 Addressing and Memory Protection

SMIPS has a full 32-bit virtual address space with a full 32-bit physical address space. Sub-word
data addressing is big-endian on SMIPS.

The virtual address space is split into two 2 GB segments, a kernel only segment (kseg) from
0x0000 0000 to 0x7fff ffff, and a kernel and user segment (kuseg) from 0x8000 0000 to 0xffff ffff.
The segments are shown in Figure 8.

In kernel mode, the processor can access any address in the entire 4 GB virtual address space. In
user mode, instruction fetches or scalar data accesses to the kseg segment are illegal and cause a
synchronous exception. The AdEF exception is generated for an illegal instruction fetch, and AdEL
and AdES exceptions are generated for illegal loads and stores respectively. For faulting stores, no
data memory will be written at the faulting address.

There is no memory translation hardware on SMIPS. Virtual addresses are directly used as physical
addresses in the external memory system. The memory controller simply ignores unused high order
address bits, in which case each physical memory address will be shadowed multiple times in the
virtual address space.

0x7fff_ffff
0x8000_0000

0xffff_ffff

0x0000_0000

2 GB

kseg

Read/Write
kusegKernel/User

2 GB

Read/Write
Kernel Only

Figure 8: SMIPS virtual address space

SMIPS Specification, Fall 2009 8

4 Reset, Interrupt, and Exception Processing

There are three possible sources of disruption to normal program flow: reset, interrupts (asyn-
chronous exceptions), and synchronous exceptions. Reset and interrupts occur asynchronously to
the executing program and can be considered to occur between instructions. Synchronous excep-
tions occur during execution of a particular instruction.

If more than one of these classes of event occurs on a given cycle, reset has highest priority, and
all interrupts have priority over all synchronous exceptions. The tables below show the priorities
of different types of interrupt and synchronous exception.

The flow of control is transferred to one of two locations as shown in Table 3. Reset has a separate
vector from all other exceptions and interrupts.

Vector Address Cause

0x0000 1000 Reset

0x0000 1100 Exceptions and internal interrupts.

Table 3: SMIPS Reset, Exception, and Interrupt Vectors.

4.1 Reset

When the external reset is deasserted, the PC is reset to 0x0000 1000, with kuc set to 0, and iec

set to 0. The effect is to start execution at the reset vector in kernel mode with interrupts disabled.
The tohost register is also set to zero to allow synchronization with the host system. All other
state is undefined.

A typical reset sequence is shown in Figure 9.

reset_vector:

mtc0 zero, $9 # Initialize counter.

mtc0 zero, $11 # Clear any timer interrupt in compare.

Initialize status with desired CU, IM, and KU/IE fields.

li k0, (CU_VAL|IM_VAL|KUIE_VAL)

mtc0 k0, $12 # Write to status register.

j kernel_init # Initialize kernel software.

Figure 9: Example reset sequence.

SMIPS Specification, Fall 2009 9

4.2 Interrupts

The two interrupts possible on SMIPS are listed in Table 4 in order of decreasing priority.

Vector ExcCode Mnemonic IM/IP index Description

Highest Priority

0x0000 1100 0 Hint 6 Tester interrupt.
0x0000 1100 2 Tint 7 Timer interrupt.

Lowest Priority

Table 4: SMIPS Interrupts.

All SMIPS interrupts are level triggered. For each interrupt there is an IP flag in the cause

register that is set if that interrupt is pending, and an IM flag in the status register that enables
the interrupt when set. In addition there is a single global interrupt enable bit, iec, that disables
all interrupts if cleared. A particular interrupt can only occur if both IP and IM for that interrupt
are set and iec is set, and there are no higher priority interrupts.

The host external interrupt flag IP6 can be written by the host test system over a scan interface.
Usually a protocol over the host scan interface informs the host that it can clear down the interrupt
flag.

The timer interrupt flag IP7 is set when the value in the count register matches the value in the
compare register. The flag can only be cleared as a side-effect of a MTC0 write to the compare

register.

When an interrupt is taken, the PC is set to the interrupt vector, and the KU/IE stack in the
status register is pushed two bits to the left, with KUc and IEc both cleared to 0. This starts the
interrupt handler running in kernel mode with further interrupts disabled. The exccode field in
the cause register is set to indicate the type of interrupt.

The epc register is loaded with a restart address. The epc address can be used to restart execution
after servicing the interrupt.

SMIPS Specification, Fall 2009 10

4.3 Synchronous Exceptions

Synchronous exceptions are listed in Table 5 in order of decreasing priority.

ExcCode Mnemonic Description

Highest Priority

6 AdEF Address or misalignment error on fetch.
10 RI Reserved instruction exception.
8 Sys Syscall exception.
9 Bp Breakpoint exception.

12 Ov Arithmetic Overflow.
4 AdEL Address or misalignment error on load.
5 AdES Address or misalignment error on store.

Lowest Priority

Table 5: SMIPS Synchronous Exceptions.

After a synchronous exception, the PC is set to 0x0000 1100. The stack of kernel/user and interrupt
enable bits held in the status register is pushed left two bits, and both kuc and iec are set to 0.

The epc register is set to point to the instruction that caused the exception. The exccode field in
the cause register is set to indicate the type of exception.

If the exception was a coprocessor unusable exception (CpU), the ce field in the cause register is
set to the coprocessor number that caused the error. This field is undefined for other exceptions.

The overflow exception (Ov) can only occur for ADDI, ADD, and SUB instructions.

If the exception was an address error on a load or store (AdEL/AdES), the badvaddr register is
set to the faulting address. The value in badvaddr is undefined for other exceptions.

All unimplemented and illegal instructions should cause a reserved instruction exception (RI).

SMIPS Specification, Fall 2009 11

5 Instruction Semantics and Encodings

SMIPS uses the standard MIPS instruction set.

5.1 Instruction Formats

There are three basic instruction formats, R-type, I-type, and J-type. These are a fixed 32 bits
in length, and must be aligned on a four-byte boundary in memory. An address error exception
(AdEF) is generated if the PC is misaligned on an instruction fetch.

R-Type

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct

6 5 5 5 5 6

R-type instructions specify two source registers (rs and rt) and a destination register (rd). The
5-bit shamt field is used to specify shift immediate amounts and the 6-bit funct code is a second
opcode field.

I-Type

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

I-type instructions specify one source register (rs) and a destination register (rt). The second
source operand is a sign or zero-extended 16-bit immediate. Logical immediate operations use a
zero-extended immediate, while all others use a sign-extended immediate.

J-Type

31 26 25 0

opcode jump target

6 26

J-type instructions encode a 26-bit jump target address. This value is shifted left two bits to give
a byte address then combined with the top four bits of the current program counter.

SMIPS Specification, Fall 2009 12

5.2 Instruction Categories

MIPS instructions can be grouped into several basic categories: loads and stores, computation
instructions, branch and jump instructions, and coprocessor instructions.

Load and Store Instructions

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16
LB/LH/LW/LBU/LHU/LL base dest offset

SB/SH/SW/SC base src offset

Load and store instructions transfer a value between the registers and memory and are encoded
with the I-type format. The effective address is obtained by adding register rs to the sign-extended
immediate. Loads place a value in register rt. Stores write the value in register rt to memory.

The LW and SW instructions load and store 32-bit register values respectively. The LH instruction
loads a 16-bit value from memory and sign extends this to 32-bits before storing into register rt.
The LHU instruction zero-extends the 16-bit memory value. Similarly LB and LBU load sign and
zero-extended 8-bit values into register rt respectively. The SH instruction writes the low-order 16
bits of register rt to memory, while SB writes the low-order 8 bits.

The effective address must be naturally aligned for each data type (i.e., on a four-byte boundary for
32-bit loads/stores and a two-byte boundary for 16-bit loads/store). If not, an address exception
(AdEL/AdES) is generated.

The load linked (LL) and store conditional (SC) instructions are used as primitives to implement
atomic read-modify-write operations for multiprocessor synchronization. The LL instruction per-
forms a standard load from the effective address (base+offset), but as a side effect the instruction
should set a programmer invisible link address register. If for any reason atomicity is violated, then
the link address register will be cleared. When the processor executes the SC instruction first, it
first verifies that the link address register is still valid. It link address register is valid then the
SC executes as a standard SW instruction except that the src register is overwritten with a one to
indicate success. If the link address register is invalid, the then SW instruction overwrites the src
register with a zero to indicate failure. There are several reasons why atomicity might be violated.
If the processor takes and exception after a LL instruction but before the corresponding SC in-
struction is executed then the link address register will be cleared. In a multi-processor system, if
a different processor uses a SC instruction to write the same location then the link address register
will also be cleared.

SMIPS Specification, Fall 2009 13

Computational Instructions

Computational instructions are either encoded as register-immediate operations using the I-type
format or as register-register operations using the R-type format. The destination is register rt for
register-immediate instructions and rd for register-register instructions.

There are only eight register-immediate computational instructions.

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16
ADDI/ADDIU/SLTI/SLTIU src dest sign-extended immediate

ANDI/ORI/XORI/LUI src dest zero-extended immediate

ADDI and ADDIU add the sign-extended 16-bit immediate to register rs. The only difference
between ADD and ADDIU is that ADDI generates an arithmetic overflow exception if the signed
result would overflow 32 bits. SLTI (set less than immediate) places a 1 in the register rt if register
rs is strictly less than the sign-extended immediate when both are treated as signed 32-bit numbers,
else a 0 is written to rt. SLTIU is similar but compares the values as unsigned 32-bit numbers.
[NOTE: Both ADDIU and SLTIU sign-extend the immediate, even though they
operate on unsigned numbers.]

ANDI, ORI, XORI are logical operations that perform bit-wise AND, OR, and XOR on register rs
and the zero-extended 16-bit immediate and place the result in rt.

LUI (load upper immediate) is used to build 32-bit immediates. It shifts the 16-bit immediate into
the high-order 16-bits, shifting in 16 zeros in the low order bits, then places the result in register
rt. The rs field must be zero.

[NOTE: Shifts by immediate values are encoded in the R-type format using the shamt

field.]

Arithmetic R-type operations are encoded with a zero value (SPECIAL) in the major opcode. All
operations read the rs and rt registers as source operands and write the result into register rd. The
6-bit funct field selects the operation type from ADD, ADDU, SUB, SUBU, SLT, SLTU, AND,
OR, XOR, and NOR.

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct

6 5 5 5 5 6
SPECIAL=0 src1 src2 dest 0 ADD/ADDU/SUB/SUBU
SPECIAL=0 src1 src2 dest 0 SLT/SLTU
SPECIAL=0 src1 src2 dest 0 AND/OR/XOR/NOR

ADD and SUB perform add and subtract respectively, but signal an arithmetic overflow if the
result would overflow the signed 32-bit destination. ADDU and SUBU are identical to ADD/SUB
except no trap is created on overflow. SLT and SLTU performed signed and unsigned compares

SMIPS Specification, Fall 2009 14

respectively, writing 1 to rd if rs < rt, 0 otherwise. AND, OR, XOR, and NOR perform bitwise
logical operations. [NOTE: NOR rd, rx, rx performs a logical inversion (NOT) of register
rx.]

Shift instructions are also encoded using R-type instructions with the SPECIAL major opcode.
The operand that is shifted is always register rt. Shifts by constant values (SLL/SRL/SRA) have
the shift amount encoded in the shamt field. Shifts by variable values (SLLV/SRLV/SRAV) take
the shift amount from the bottom five bits of register rs. SLL/SLLV are logical left shifts, with
zeros shifted into the least significant bits. SRL/SRLV are logical right shifts with zeros shifted
into the most significant bits. SRA/SRAV are arithmetic right shifts which shift in copies of the
original sign bit into the most significant bits.

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct

6 5 5 5 5 6
SPECIAL=0 0 src dest shift SLL/SRL/SRA
SPECIAL=0 shift src dest 0 SLLV/SRLV/SRAV

Multiply and divide instructions target the hi and lo registers and are encoded as R-type instruc-
tions under the SPECIAL major opcode. These instructions are fully interlocked in hardware.
Multiply instructions take two 32-bit operands in registers rs and rt and store their 64-bit product
in registers hi and lo. MULT performs a signed multiplication while MULTU performs an unsigned
multiplication. DIV and DIVU perform signed and unsigned divides of register rs by register rt
placing the quotient in lo and the remainder in hi. Divides by zero do not cause a trap. A software
check can be inserted if required.

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct

6 5 5 5 5 6
SPECIAL=0 src1 src2 0 0 MULT/MULTU/DIV/DIVU
SPECIAL=0 0 0 dest 0 MFHI/MFLO
SPECIAL=0 src 0 0 0 MTHI/MTLO

The values calculated by a multiply or divide instruction are retrieved from the hi and lo registers
using the MFHI (move from hi) and MFLO (move from lo) instructions, which write register rd.
MTHI (move to hi) and MTLO (move to lo) instructions are also provided to allow the multiply
registers to be written with the value in register rs (these instructions are used to restore user state
after a context swap).

SMIPS Specification, Fall 2009 15

Jump and Branch Instructions

Jumps and branches can change the control flow of a program. Unlike the MIPS32 ISA, the SMIPS
ISA does not have a programmer visible branch delay slot.

Absolute jumps (J) and jump and link (JAL) instructions use the J-type format. The 26-bit jump
target is concatenated to the high order four bits of the program counter of the delay slot, then
shifted left two bits to form the jump target address (using Verilog notation, the target address is
{pc_plus4[31:28],target[25:0],2’b0}. JAL stores the address of the instruction following the
jump (PC+4) into register r31.

31 26 25 0

opcode jump target

6 26
J/JAL offset

The indirect jump instructions, JR (jump register) and JALR (jump and link register), use the
R-type encoding under a SPECIAL major opcode and jump to the address contained in register
rs. JALR writes the link address into register rd.

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct

6 5 5 5 5 6
SPECIAL=0 src 0 0 0 JR
SPECIAL=0 src 0 dest 0 JALR

All branch instructions use the I-type encoding. The 16-bit immediate is sign-extended, shifted left
two bits, then added to the address of the instruction in the delay slot (PC+4) to give the branch
target address.

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16
BEQ/BNE src1 src2 offset

BLEZ/BGTZ src 0 offset
REGIMM src BLTZ/BGEZ offset

BEQ and BNE compare two registers and take the branch if they are equal or unequal respectively.
BLEZ and BGTZ compare one register against zero, and branch if it is less than or equal to zero,
or greater than zero, respectively. BLTZ and BGEZ examine the sign bit of the register rs and
branch if it is negative or positive respectively.

SMIPS Specification, Fall 2009 16

System Coprocessor Instructions

The MTC0 and MFCO instructions access the control registers in coprocessor 0, transferring a
value from/to the coprocessor register specified in the rd field to/from the CPU register specified
in the rt field. It is important to note that the coprocessor register is always in the rd field and
the CPU register is always in the rt field regardless of which register is the source and which is the
destination.

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct

6 5 5 5 5 6
COP0 MF dest cop0src 0 0
COP0 MT src cop0dest 0 0
COP0 CO 0 0 0 ERET

The restore from exception instruction, ERET, returns to the interrupted instruction at the com-
pletion of interrupt or exception processing. An ERET instruction should pop the top value of the
interrupt and kernel/user status register stack, restoring the previous values.

Coprocessor 2 Instructions

Coprocessor 2 is reserved for an implementation defined hardware unit. The MTC2 and MFC2
instructions access the registers in coprocessor 2, transferring a value from/to the coprocessor
register specified in the rd field to/from the CPU register specified in the rt field. The CTC2 and
CFC2 instructions serve a similar process. The Coprocessor 2 implementation is free to handle the
coprocessor register specifiers in MTC2/MFC2 and CTC2/CFC2 in any way it wishes.

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct

6 5 5 5 5 6
COP2 MF dest cop2src 0 0
COP2 MT src cop2dest 0 0
COP2 CF dest cop2src 0 0
COP2 CT src cop2dest 0 0

The LWC2 and SWC2 instructions transfer values between memory and the coprocessor registers.
Note that although cop2dest and cop2src fields are coprocessor register specifiers, the ISA does not
define how these correspond to the coprocessor register specifiers in other Coprocessor 2 instructions.

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16
LWC2 base cop2dest offset
SWC2 base cop2src offset

SMIPS Specification, Fall 2009 17

The COP2 instruction is the primary mechanism by which a programmer can specify instruction
bits to control Coprocessor 2. The 25-bit copfunc field is compeletely implementation dependent.

31 26 25 25 24 0

opcode coprocessor function

6 1 25
COP2 C0 copfunc

Special Instructions

The SYSCALL and BREAK instructions are useful for implementing operating systems and debug-
gers. The SYNC instruction can be necessary to guarantee strong load/store ordering in modern
multi-processors with sophisticated memory systems.

31 26 25 6 5 0

opcode 0 funct

6 20 6
SPECIAL=0 code SYSCALL
SPECIAL=0 code BREAK
SPECIAL=0 0 SYNC

The SYSCALL and BREAK instructions cause and immediate syscall or break exception. To
access the code field for use as a software parameter, the exception handler must load the memory
location containing the syscall instruction.

The SYNC instruction is used to order loads and stores. All loads and stores before the SYNC
instruction must be visible to all other processors in the system before any of the loads and stores
following the SYNC instruction are visible.

5.3 SMIPS Variants

The SMIPS specification defines three SMIPS subsets: SMIPSv1, SMIPSv2, and SMIPSv3. SMIPSv1
includes the following five instructions: ADDIU, BNE, LW, SW, and MTC0. The tohost register
is the only implemented system coprocessor register. SMIPSv2 includes all of the simple arithmetic
instructions except for those which throw overflow exceptions. It does not include multiply or divide
instructions. SMIPSv2 only supports word loads and stores. All jumps and branches are supported.
Neither SMIPSv1 or SMIPSv2 support exceptions, interrupts, or most of the system coprocessor.
SMIPSv3 is the full SMIPS ISA and includes everything described in this document except for
Coprocessor 2 instructions. Table 7 notes which instructions are supported in each variant.

5.4 Unimplemented instructions

Several instructions in the MIPS32 instruction set are not supported by the SMIPS. These instruc-
tions should cause a reserved instruction exception (RI) and can be emulated in software by an

SMIPS Specification, Fall 2009 18

exception handler.

The misaligned load/store instructions, Load Word Left (LWL), Load Word Right (LWR), Store
Word Left (SWL), and Store Word Right (SWR), are not implemented. A trap handler can emulate
the misaligned access. Compilers for SMIPS should avoid generating these instructions, and should
instead generate code to perform the misaligned access using multiple aligned accesses.

The MIPS32 trap instructions, TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU, TLTI,
TLTIU, TEQI, TNEI, are not implemented. The illegal instruction trap handler can perform the
comparison and if the condition is met jump to the appropriate exception routine, otherwise resume
user mode execution after the trap instruction. Alternatively, these instructions may be synthesized
by the assembler, or simply avoided by the compiler.

The floating point coprocessor (COP1) is not supported. All MIPS32 coprocessor 1 instructions
are trapped to allow emulation of floating-point. For higher performance, compilers for SMIPS
could directly generate calls to software floating point code libraries rather than emit coprocessor
instructions that will cause traps, though this will require modifying the standard MIPS calling
convention.

Branch likely and branch and link instructions are not implemented and cannot be emulated so
they should be avoided by compilers for SMIPS.

SMIPS Specification, Fall 2009 19

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct R-type
opcode rs rt immediate I-type
opcode target J-type

Load and Store Instructions
v3 100000 base dest signed offset LB rt, offset(rs)
v3 100001 base dest signed offset LH rt, offset(rs)
v1 100011 base dest signed offset LW rt, offset(rs)
v3 100100 base dest signed offset LBU rt, offset(rs)
v3 100101 base dest signed offset LHU rt, offset(rs)
v3 110000 base dest signed offset LL rt, offset(rs)
v3 101000 base src signed offset SB rt, offset(rs)
v3 101001 base src signed offset SH rt, offset(rs)
v1 101011 base src signed offset SW rt, offset(rs)
v3 111000 base src signed offset SC rt, offset(rs)

I-Type Computational Instructions
v3 001000 src dest signed immediate ADDI rt, rs, signed-imm.
v1 001001 src dest signed immediate ADDIU rt, rs, signed-imm.
v2 001010 src dest signed immediate SLTI rt, rs, signed-imm.
v2 001011 src dest signed immediate SLTIU rt, rs, signed-imm.
v2 001100 src dest zero-ext. immediate ANDI rt, rs, zero-ext-imm.
v2 001101 src dest zero-ext. immediate ORI rt, rs, zero-ext-imm.
v2 001110 src dest zero-ext. immediate XORI rt, rs, zero-ext-imm.
v2 001111 00000 dest zero-ext. immediate LUI rt, zero-ext-imm.

R-Type Computational Instructions
v2 000000 00000 src dest shamt 000000 SLL rd, rt, shamt
v2 000000 00000 src dest shamt 000010 SRL rd, rt, shamt
v2 000000 00000 src dest shamt 000011 SRA rd, rt, shamt
v2 000000 rshamt src dest 00000 000100 SLLV rd, rt, rs
v2 000000 rshamt src dest 00000 000110 SRLV rd, rt, rs
v2 000000 rshamt src dest 00000 000111 SRAV rd, rt, rs
v3 000000 src1 src2 dest 00000 100000 ADD rd, rs, rt
v2 000000 src1 src2 dest 00000 100001 ADDU rd, rs, rt
v3 000000 src1 src2 dest 00000 100010 SUB rd, rs, rt
v2 000000 src1 src2 dest 00000 100011 SUBU rd, rs, rt
v2 000000 src1 src2 dest 00000 100100 AND rd, rs, rt
v2 000000 src1 src2 dest 00000 100101 OR rd, rs, rt
v2 000000 src1 src2 dest 00000 100110 XOR rd, rs, rt
v2 000000 src1 src2 dest 00000 100111 NOR rd, rs, rt
v2 000000 src1 src2 dest 00000 101010 SLT rd, rs, rt
v2 000000 src1 src2 dest 00000 101011 SLTU rd, rs, rt

Table 6: Instruction listing for SMIPS.

SMIPS Specification, Fall 2009 20

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct R-type
opcode rs rt immediate I-type
opcode target J-type

Multiply/Divide Instructions
v3 000000 00000 00000 dest 00000 010000 MFHI rd
v3 000000 rs 00000 00000 00000 010001 MTHI rs
v3 000000 00000 00000 dest 00000 010010 MFLO rd
v3 000000 rs 00000 00000 00000 010011 MTLO rs
v3 000000 src1 src2 00000 00000 011000 MULT rs, rt
v3 000000 src1 src2 00000 00000 011001 MULTU rs, rt
v3 000000 src1 src2 00000 00000 011010 DIV rs, rt
v3 000000 src1 src2 00000 00000 011011 DIVU rs, rt

Jump and Branch Instructions
v2 000010 target J target
v2 000011 target JAL target
v2 000000 src 00000 00000 00000 001000 JR rs
v2 000000 src 00000 dest 00000 001001 JALR rd, rs
v2 000100 src1 src2 signed offset BEQ rs, rt, offset
v1 000101 src1 src2 signed offset BNE rs, rt, offset
v2 000110 src 00000 signed offset BLEZ rs, offset
v2 000111 src 00000 signed offset BGTZ rs, offset
v2 000001 src 00000 signed offset BLTZ rs, offset
v2 000001 src 00001 signed offset BGEZ rs, offset

System Coprocessor (COP0) Instructions
v2 010000 00000 dest cop0src 00000 000000 MFC0 rt, rd
v1 010000 00100 src cop0dest 00000 000000 MTC0 rt, rd
v3 010000 10000 00000 00000 00000 011000 ERET

Coprocessor 2 (COP2) Instructions
- 010010 00000 dest cop2src 00000 000000 MFC2 rt, rd
- 010010 00100 src cop2dest 00000 000000 MTC2 rt, rd
- 010010 00010 dest cop2src 00000 000000 CFC2 rt, rd
- 010010 00110 src cop2dest 00000 000000 CTC2 rt, rd
- 110010 base cop2dest signed offset LWC2 rt, offset(rs)
- 111010 base cop2src signed offset SWC2 rt, offset(rs)
- 010010 1 | copfunc COP2 copfunc

Special Instructions
v3 000000 00000 00000 00000 00000 001100 SYSCALL
v3 000000 00000 00000 00000 00000 001101 BREAK
v3 000000 00000 00000 00000 00000 001111 SYNC

Table 7: Instruction listing for SMIPS.

SMIPS Specification, Fall 2009 21

Acknowledgements

Many people have contributed to versions of this specification over the years. The specification was
originally developed for 6.371 Introduction to VLSI Systems course at Massachusetts Institute of
Technology by Krste Asanović and Chris Terman. Contributors include: Christopher Batten, John
Lazzaro, Yunsup Lee, and John Wawrzynek. Versions of this specification have been used in the
following courses:

• 6.371 Intrdouction to VLSI Systems (2002) - Massachusetts Institute of Technology

• 6.375 Complex Digital Systems (2005-2009) - Massachusetts Institute of Technology

• CS250 VLSI Systems Design (2009) - University of California at Berkeley

References

[1] J. L. Hennessy and D. A. Patterson. Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, second edition, February 1997. ISBN 1558604286.

[2] MIPS Technologies Inc. MIPS32 architecture for programmers, 2002.
http://www.mips.com/publications/processor_architecture.html

[3] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice Hall, 2nd edition, September 1991.
ISBN 0135904722.

[4] D. Sweetman. See MIPS Run. Morgan Kaufmann, April 1999. ISBN 1558604103.

