
C/CS/Phys 191 Quantum Fourier Transform 10/28/03
Fall 2003 Lecture 19

1 Fourier Transform
Definition 19.1 (FTN): The Fourier transform modN is theN×N matrix given by

FTN =
1√
N







1 1 1 ··· 1
1 ω ω2 ··· ωN−1

1 ω2 ω4 ··· ω2(N−1)

...
...

...
...

...
1 ωN−1 ω2(N−1) ··· ω (N−1)2






,

whereω = e2πi/N is a primitiveNth root of unity. That is, thei, j’th element ofFTN is 1√
N

ω i j, for i, j =
0, . . . ,N−1.

Equivalently, in ket notation, forj ∈ {0,1, . . . ,N−1}, FTN| j〉= 1√
N ∑N−1

i=0 ω i j|i〉.
Lemma 19.1: FTN is unitary.

Proof: We need to check the inner product between theith and jth columns ofFTN , that 〈i|FT †
N FTN| j〉 =

δi j ≡
{

1 if i = j
0 if i 6= j . Indeed, this inner product is

1
N

N−1

∑
k=0

ω ikω jk = 1
N

N−1

∑
k=0

ωk(j−i) .

This is a geometric series with ratio between termsω j−i and so can easily be evaluated. Ifi = j modN, then
each term isω0 = 1, so the inner product isN/N = 1. If i 6= j, then the sum is

1+ ω j−i + ω2(j−i) + · · ·+ ω(N−2)(j−i) + ω(N−1)(j−i) .

Multiplying the sum byω i− j 6= 1 gives

ω j−i + ω2(j−i) + ω3(j−i) + · · ·+ ω(N−1)(j−i) + ωN(j−i) .

But ωN(j−i) = (ωN) j−i = 1, so we have just rearranged the terms of the summation; the sum itself doesn’t
change when multiplied byω j−i. Therefore the sum is zero, as claimed.2

The above calculation is important enough to be stated separately:

Lemma 19.2: Let ω be a primitive Nth root of unity (i.e., ωN = 1 but ωm 6= 1 for 0 < m < N). Then

N−1

∑
k=0

ωk j =

{

N if j = 0 mod N
0 otherwise

.

2 Fast Fourier Transform
Computing (classically) the discrete Fourier transform isessential for digital signal processing. In this case
we have a list ofN numbers which we wish to convert into the Fourier basis by multiplying by theFTN

C/CS/Phys 191, Fall 2003, Lecture 19 1

matrix. Naı̈ve matrix multiplication however takesΘ(N2) steps; we take the dot product of each of theN
rows ofFTN with the input column vector, of lengthN.

In fact, theFTN matrix has a nice structure which lets us apply the Fourier transform in onlyO(N logN)
steps – an important (classical) algorithm known as theFast Fourier Transform.

How does the Fast Fourier Transform work? We’ll do an examplewith N = 6. The Fourier transform matrix
is

FT6 =
1√
6









1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5

1 ω2 ω4 1 ω2 ω4

1 ω3 1 ω3 1 ω3

1 ω4 ω2 1 ω4 ω2

1 ω5 ω4 ω3 ω2 ω









.

(Here, we have used thatω6 = 1. So for example the bottom right entry isω5·5 = (ω6)4ω = ω .) Notice that
the blue-shaded entries, put together, give the matrix

1√
6

(

1 1 1
1 ω2 ω4

1 ω4 ω2

)

.

Sinceω2
6 = e

2πi
6 2 = e

2πi
3 = ω3 a primitive third root of unity, the above matrix is just

√
2 timesFT3. The

red-shaded entries ofFT6 also give
√

2 timesFT3. The green-shaded entries give
√

2
(1 0 0

0 ω 0
0 0 ω2

)

FT3, and the

unshaded entries give minus this (sinceω3
6 = eiπ =−1).

Thus to applyFT6 to some vector, we need only applyFT3 to its even entries (indexed 0, 2 and 4), andFT3

to its odd entries (indexed 1, 3 and 5), then add the results upin a certain manner. Since we use the first
Fourier transform twice (blue and red entries), and also thesecond Fourier transform twice (green and white
entries), this ends up saving us work.

The same procedure works in general, as long asN is even. IfN is a power of two,N = 2n, then the procedure
can be applied recursively. LetT (M) be the time it takes to applyFTM. Then we find the recursion

T (N) = 2T (N
2)+ O(N) ,

since we need to compute two Fourier transforms on half the dimension, then recombine the results. A
solution to this recursion isT (N) = O(N logN). Indeed, substituting this in,

N log2N
?
= 2(N

2 log2
N
2)+ N

holds, since log2
N
2 = log2 N−1.

3 Classical vs. Quantum Fourier Transform
We just showed how to compute the Fourier transform ofN numbers inO(N logN) time. Now consider
theseN = 2n numbers as determining a quantum state onn = log2 N qubits. We will find a quantum circuit
computing the Fourier transform:

QFTN

(

∑
x∈{0,1}n

αx|x〉
)

= ∑
y∈{0,1}n

(

1√
N ∑

x∈{0,1}n

αxωxy
N

)

|y〉 .

(Notice that we can considerx andy as eithern-bit strings or as numbers between 0 andN−1 interchange-
ably; the bit string is the number in binary. Soωxy makes sense.) Since we showed thatFTN is unitary, some

C/CS/Phys 191, Fall 2003, Lecture 19 2

Figure 1: Two equivalent circuits each computing the Fourier transform mod 16. The boxed part of the
second circuit computesFT8.

quantum circuit computing it exists, but such a circuit could possibly be inefficient (take exponential time
in n). In fact, our QFT circuit will take timeO(n2) = O(log2N). This is an exponential speedup over the
classical Fast Fourier Transform!

But there’s a catch. When we take the classical Fourier transform of (α0, . . . ,αN−1), we get the whole list
(1√

N ∑x αx, . . . ,
1√
N ∑x ω(N−1)xαx), whereas quantumly the Fourier transform of∑x αx|x〉 gives 1√

N ∑x,y∈{0,1}n ωxy
N |y〉.

We cannot read off the list of the coefficients of a quantum state! Instead, we can (for example) measure the
state, measuringy with probability

1
N |∑

x
αxωxy|2 .

That is, we cansample from the Fourier-transformed coefficients. However, even with this limitation, the
quantum Fourier transform is quite powerful.

4 Circuit for Quantum Fourier Transform
We’ll show the circuit for the quantum Fourier transform modN = 2n = 16. It generalizes naturally. Let

Rk =
(

1 0
0 e2πi/2k

)

=
(

1 0
0 ω2k

)

=
(

1 0
0 ω2n−k

2n

)

,

a phase shift. Two equivalent circuits computing the Fourier transform mod 16 are given in Figure 1.
Herex = x1x2x3x4 considered as a binary string, orx = 23x1 + 22x2 + 2x3 + x4 considered as a number in
{0,1, . . . ,15}. Similarly for y.

The two-qubit gate is a controlled-Rk gate; if the second (control) bit is 0, then nothing happens,and
if it is 1, thenRk is applied to the first (target) bit. The matrix for this gate is

(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πi/2k

)

.

C/CS/Phys 191, Fall 2003, Lecture 19 3

That is, a phase ofe2πi/2k
is added iff both bits are 1 (in this case, it actually doesn’tmatter which bit is

considered the control, and which the target). We write

cRk|a0〉|a1〉= e
2πi
2k a0a1 = ω2n−ka0a1

N .

Why do these circuits achieve the Fourier transform mod 16? LetU be the unitary transformation achieved
by these circuits. We claim that for allx,y ∈ {0,1}n, 〈y|U |x〉= 〈y|FTN |x〉, soU = FTN.

Proof: Indeed, because of then Hadamard gates,U acting on|x〉 outputs an equal superposition over all|y〉

U |x〉= 1√
N

N−1

∑
y=0

eiλy |y〉 ,

except with some phaseλy on |y〉. We need to show that

λy
?
= 2πxy/N

=
2π
2n

(

n−1

∑
h=0

2hxn−h

)(

n−1

∑
i=0

2iyn−i

)

≡ 2π
2n

n−1

∑
j=0

2j(xn− jyn + xn− j+1yn−1 + · · ·+ xnyn− j) mod 2π

=
2π
2n

n

∑
k=1

2n−k(xkyn + xk+1yn−1 + · · ·+ xnyk) , (1)

where we have expanded out and multiplied the binary representations ofx andy, dropping all terms with
an integer multiple of 2π (this is why the sum overj only goes toj = n−1), and letk = n− j.

Indeed, consider the first circuit in Figure 1. A Hadamard gate on input wirel (output wiren− l + 1)
contributes a phase of−1 iff xn−l+1 andyl are both 1 – that is, a phase ofπxlyn−l+1 = 2πxlyn−l+1

2n−1

2n . Thus
the total phase due to Hadamard gates is

2π
2n 2n−1

n

∑
l=1

xlyn−l+1 .

This is thek = 1 term of the sum in Eq. (1).

For k > 1, the cRk gates act between thelth input wire and the(n− l + k)th input wire,l = k, . . . ,n, con-
tributing a total phase

2π
2n

n

∑
l=k

2n−kxlyn−l+k ,

thekth term of Eq. (1).2

Another way of arguing that these circuits achieveFTN is by induction onn, noticing that in the second of
the circuits, the Fourier transform modN2 appears (boxed). ThisFTN/2 arises from the same structure of the
FTN matrix which allowed the Fast Fourier Transform to work by two multiplications byFTN/2 – quantumly
one might say that both Fourier transformsFTN/2 are computed in parallel, with additional phases added
depending on whether the row (x) was even or odd. The last bitxn determines whetherx is even or odd.

C/CS/Phys 191, Fall 2003, Lecture 19 4

5 Properties of the Fourier Transform
• SinceFTN = 1√

N ∑N−1
x,y=0 ωxy

N |x〉〈y| is unitary, its inverse isFT †
N = 1√

N ∑N−1
x,y=0 ω−xy

N |y〉〈x|. This is just

another Fourier transform, but usinge−2πi/N instead ofe2πi/N as the primitiveNth root of unity.

• If Tl is translation byl, Tl|x〉 = |x + l modN〉, and Pk is a change of phase,Pk|x〉 = ωxk|x〉, then
(FTN)TlPk = PlT−k(FTN). Indeed,

FTN

(

∑
x

αxωxk|x+ l〉
)

= 1√
N ∑

x,y
αxωxkω(x+l)y|y〉

= 1√
N ∑

x,y
ωylαxωx(y+k)|y〉

= 1√
N ∑

x,y
ω(y−k)lαxωxy|y− k〉 .

We say that the Fourier transform maps translations to phaseshifts, and vice versa. A phase shift
doesn’t change the probability of measuring a state in the standard basis –|〈y|Pk|ψ〉|2 = |ω−ky〈y|Ψ〉|2 =
|〈y|Ψ〉|2. Thus for Fourier sampling, we find the interesting consequence that translating the input
(cyclically) doesn’t affect the output distribution.

• Let r divide N. Then

FTN
1√
N/r

N/r−1

∑
j=0

|r j〉 =
√

r
N

N−1

∑
y=0

(

N/r−1

∑
j=0

ωr jy
N

)

|y〉

= 1√
r

r−1

∑
i=0

|Nr i〉 ,

where in the last step we used thatωr
N = ωN/r, so∑N/r−1

j=0 ωr jy
N is N/r if y = 0 modN/r and 0 otherwise.

By the property(FTN)TlPk = PlT−k(FTN), we see that, whenr|N,

FTN
1√
N/r

N/r−1

∑
j=0

ωkr j|r j + l〉= 1√
r

r−1

∑
i=0

ω l(N
r i−k)|Nr i− k〉 .

• In particular (r = 1), FTN |0〉 = 1√
N ∑y |y〉 the uniform superposition, andFTN

1√
N ∑y |y〉 = |0〉. This

is just as for then-fold Hadamard transformH⊗n. However, while the Fourier transform mod 2 is
1√
2

(

1 1
1 −1

)

= H, FT2n 6= H⊗n for n > 1.

• We have shown how to compute the quantum Fourier transform mod N, whereN is a power of
two. Similar constructions work for computing the quantum Fourier transform modN, whereN is a
power of any prime. For more generalN: if r ands are relatively prime, we can combine the Fourier
transforms modr and mods to yield a Fourier transform modrs. Indeed, the Chinese Remainder
Theorem gives a ring isomorphism betweenZrs andZr×Zs, given by

m mod(rs) = mrs(s
−1 modr)+ msr(r

−1 mods)←→ (mr,ms) (wheremp = m mod p) .

Both directions of the isomorphism can be efficiently computed classically. By homework 7, there is
a n efficient quantum circuit taking|m〉 to |m modr〉⊗ |m mods〉. Apply this circuit, then compute

C/CS/Phys 191, Fall 2003, Lecture 19 5

the quantum Fourier transform modr on the first register, andFTs on the second register, and finally
invert the isomorphism. Altogether, we get

|m〉 7→ 1√
rs

r−1

∑
x=0

s−1

∑
y=0

ωmrx
r ωmsy

s |xs(s−1)r + yr(r−1)s〉 .

This is not the Fourier transform mod(rs), but it is close. With a little thought, we see that we should
have applied the Fourier transform modr usingωs−1 modr

r as the primitiverth root of unity instead
of just ωr, and similarly we should have usedωr−1 mods

s as the primitivesth root of unity. Then

|m〉 7→ 1√
rs ∑

xy
(ω(s−1)r

r)mrx(ω(r−1)s
s)msy|xs(s−1)r + yr(r−1)s〉

= 1√
rs ∑

xy
ωmrxs(s−1)r+msyr(r−1)s

rs |xs(s−1)r + yr(r−1)s〉

= 1√
rs

rs−1

∑
z=0

ωmz
rs |z〉 .

C/CS/Phys 191, Fall 2003, Lecture 19 6

	Fourier Transform
	Fast Fourier Transform
	Classical vs. Quantum Fourier Transform
	Circuit for Quantum Fourier Transform
	Properties of the Fourier Transform

