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| Fourier Transform

Definition 19.1 FTy): The Fourier transform moN is theN x N matrix given by

1 1 1 1
1 w w? e Nt
1 1 o ot . 2ND
FTy = —— :
WL
1 N1 @2N-1) .. (N-1)?

wherew = €?/N is a primitive Nth root of unity. That is, the, j'th element ofFTy is \%Nw”, fori,j =
0,.. N—1

Equivalently, in ket notation, fof € {0,1,...,N — 1}, FTn|j) = < S5t w'l|i).

Lemma 19.1 FTy isunitary.

Proof: We need to check the inner product betweenithend jth columns ofF Ty, that<i|FTNTFTN|j> =

3= {(1) :I:;} . Indeed, this inner product is

L Ni:ﬁw“‘ = Nilwk(j‘i) :
K= k=0
This is a geometric series with ratio between tetns' and so can easily be evaluatedi # j modN, then
each term igo® = 1, so the inner product /N = 1. If i # |, then the sum is
14 i1+ @) o1 @oN-2(-D) | (y(N=D(~1)
Multiplying the sum byw'~/ = 1 gives
0 4+ 2070 4 301 L o(N=D(=0) 4 NG

But NI~ = (wN)I~' = 1, so we have just rearranged the terms of the summationuthétself doesn't
change when multiplied bgo!~'. Therefore the sum is zero, as claiméd.
The above calculation is important enough to be stated atghar

Lemma 19.2 Let w bea primitive Nth root of unity (i.e., wN = 1 but w™ # 1 for 0 < m< N). Then

N-1 .

i N if j=0modN
ijkj - { 0 :)trj1erwisrgo
K=

2 Fast Fourier Transform

Computing (classically) the discrete Fourier transforrassential for digital signal processing. In this case
we have a list oN numbers which we wish to convert into the Fourier basis bytiplying by the FTy

[EEY
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matrix. Naive matrix multiplication however tak€N?) steps; we take the dot product of each of khe
rows of FTy with the input column vector, of lengtN.

In fact, theFTy matrix has a nice structure which lets us apply the Fourasform in onlyO(NlogN)
steps — an important (classical) algorithm known asHds Fourier Transform.

How does the Fast Fourier Transform work? We’ll do an examyile N = 6. The Fourier transform matrix
is

1 1 1 1 1 1

1 1 0 @ @ o

_ 1 o ot 1 w*
Fle = Vel et e 1w
1 o @ 1 o o

1 o o & @ w

(Here, we have used thaf = 1. So for example the bottom right entryds™® = (w®)*w = w.) Notice that
the blue-shaded entries, put together, give the matrix

4 (pEa
NN T

2mi 2mi
Sincewg —e62=¢e3 =wza primitive third root of unity, the above matrix is jusf2 timesFTs. The

red-shaded entries &Tg also givev/2 timesFTs. The green-shaded entries give® (é % 82) FT3, and the
. w
unshaded entries give minus this (singg= €™ = —1).

Thus to apply=Tg to some vector, we need only apfhy; to its even entries (indexed 0, 2 and 4), &

to its odd entries (indexed 1, 3 and 5), then add the resulis apcertain manner. Since we use the first
Fourier transform twice (blue and red entries), and alse#oend Fourier transform twice (green and white
entries), this ends up saving us work.

The same procedure works in general, as long sseven. IfN is a power of twoN = 2", then the procedure
can be applied recursively. L&{(M) be the time it takes to applTy. Then we find the recursion

T(N)=2T(§)+O(N) ,

since we need to compute two Fourier transforms on half theedsion, then recombine the results. A
solution to this recursion i (N) = O(NlogN). Indeed, substituting this in,

Nlog,N < 2(¥log, ¥) +N

holds, since logy = log, N — 1.

3 Classical vs. Quantum Fourier Transform

We just showed how to compute the Fourier transfornNaiumbers inO(NlogN) time. Now consider
theseN = 2" numbers as determining a quantum stateenlog, N qubits. We will find a quantum circuit
computing the Fourier transform:

OFT, Cfx|X>> = (i 0y Xy) ly) -
(2o 3, (g, o

(Notice that we can considerandy as eithem-bit strings or as numbers between 0 &hd 1 interchange-
ably; the bit string is the number in binary. &8 makes sense.) Since we showed fR; is unitary, some

C/CS/Phys 191, Fall 2003, Lecture 19 2



) L "
X3 H Yz
X4 . l H | y'l
X1_ H R2 @ @ y4
X5 H /Rﬁ

Figure 1. Two equivalent circuits each computing the Fouransform mod 16. The boxed part of the
second circuit computdsTg.

guantum circuit computing it exists, but such a circuit copbssibly be inefficient (take exponential time
in n). In fact, our QFT circuit will take timeéD(n?) = O(log?N). This is an exponential speedup over the
classical Fast Fourier Transform!

But there’s a catch. When we take the classical Fourier foamsof (o, ...,an-1), we get the whole list
(%ﬁ S Oy - - %ﬁ v, wN"PXay), whereas quantumly the Fourier transfornygiy|x) gives\% Txyelo1pn O 1Y)-
We cannot read off the list of the coefficients of a quanturtestastead, we can (for example) measure the
state, measuring with probability

§IS axaw¥? .
X

That is, we carsample from the Fourier-transformed coefficients. However, evdih this limitation, the
guantum Fourier transform is quite powerful.
4 Circuit for Quantum Fourier Transform
We'll show the circuit for the quantum Fourier transform nmdd= 2" = 16. It generalizes naturally. Let
1 0 10 1 0
R (bofe) = (38) = () -
a phase shift. Two equivalent circuits computing the Fauansform mod 16 are given in Figuié 1.

Herex = x1XoX3Xs considered as a binary string, 0= 23x; + 22x, + 2x3 + x4 considered as a number in
{0,1,...,15}. Similarly fory.

The two-qubit gate 2 is a controlledR gate; if the second (control) bit is 0, then nothing happans,
ifitis 1, thenRy is applied to the first (target) bit. The matrix for this geate i
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That is, a phase /2 is added iff both bits are 1 (in this case, it actually doesmettter which bit is
considered the control, and which the target). We write

2ri -
"Rilao) @) = e Z ¥ = i "

Why do these circuits achieve the Fourier transform mod 1&®JLbe the unitary transformation achieved
by these circuits. We claim that for adly € {0,1}", (y|U [x) = (y|FTn|x), soU = FTy.

Proof: Indeed, because of tmeHadamard gates] acting on|x) outputs an equal superposition over|gll

N-1

U el
X) = y; y)

except with some phask on |y). We need to show that

?

2mxy/N

(i) (i)

21" 1
on Z)Z’ Xn—j¥n + Xn_j+1¥n-1 -+ +Xn¥n-j) mod 2T

Ay

= g Z 2" (X + Xt Y1+ -+ Xk (1)
k=1

where we have expanded out and multiplied the binary reptasens ofx andy, dropping all terms with
an integer multiple of & (this is why the sum ovej only goes toj = n—1), and lek =n— j.

Indeed, consider the first circuit in Figuré 1. A Hadamardega input wirel (output wiren—l +1)

contributes a phase ef1 iff x,_|,1 andy, are both 1 —that is, a phasemyn_+1 = 27X Yn_1+1%m 2n . Thus
the total phase due to Hadamard gates is

n
%Tzn_l Z X Yn-l4+1 -
=1

This is thek = 1 term of the sum in Eq[]1).

Fork > 1, the °R¢ gates act between théh input wire and thén — | + k)th input wire,| = k;...,n, con-
tributing a total phase

2m
? Z<2n kXIYn—I+k )
=

thekth term of Eq.[(1) O

Another way of arguing that these circuits achi®g, is by induction om, noticing that in the second of
the circuits, the Fourier transform mcgi appears (boxed). ThisTy , arises from the same structure of the
FTn matrix which allowed the Fast Fourier Transform to work by tultiplications byFTy > — quantumly
one might say that both Fourier transfori@3y , are computed in parallel, with additional phases added
depending on whether the row) vas even or odd. The last bi determines whethetis even or odd.
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3 Properties of the Fourier Transform

* SinceFTy = ﬁz)'gy;low,ﬁy\xxw is unitqry, its inverse ifT,I \/_zxy_ow,\,xy]yXX\ This is just
another Fourier transform, but usieg?®/N instead oe?™/N as the primitiveNth root of unity.

« If T is translation byl, Tj|x) = |[x+1 modN), andF is a change of phasék|x) = w™|x), then
(FTy)TiR = AT «(FTy). Indeed,

FTN<Zaxka\x+l>> - ﬁxzya w]y)
= > e Ny
5
= ﬁZwykawxyyy k) .

X7

<

We say that the Fourier transform maps translations to phlaifis, and vice versa. A phase shift
doesn't change the probability of measuring a state in tedstrd basis Hy|R| @) |? = |0 Y {y|W)|? =
|(y|W)|?. Thus for Fourier sampling, we find the interesting consegeehat translating the input
(cyclically) doesn't affect the output distribution.

e Letr divideN. Then

N/r—1

FTW%/H;)“” = WZ(E; >
3,

where in the last step we used thaf = w\/r, soz'\'/r 1w,(|jy isN/r if y=0 modN/r and 0 otherwise.

By the property(FTn)TiRc = RT_«(FTn), we see that, wherN,

N/r—1

Z) WIlrj+1) = \[;w Tio “WINj k)

* In particular ¢ = 1), FTy|0) = \Fzy|y> the uniform superposition, anélTNfzy|y> |0). This

is just as for then-fold Hadamard transforni®". However, while the Fourier transform mod 2 is

\/15(1 1) =H,FTxn#H®" forn> 1.

* We have shown how to compute the quantum Fourier transforad Mg whereN is a power of
two. Similar constructions work for computing the quantuaufer transform modN, whereN is a
power of any prime. For more genefdl if r ands are relatively prime, we can combine the Fourier
transforms mod and modsto yield a Fourier transform mad. Indeed, the Chinese Remainder
Theorem gives a ring isomorphism betweggandZ, x Z, given by

mmod (rs) = ms(s * modr) + mgr (r~* mods) «— (m,ms)  (wherem, =mmodp) .

Both directions of the isomorphism can be efficiently coneputlassically. By homework 7, there is
a n efficient quantum circuit takingn) to |mmodr) ® [/mmods). Apply this circuit, then compute
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the quantum Fourier transform moabn the first register, anBTs on the second register, and finally
invert the isomorphism. Altogether, we get

r—1s—-1

M s 3 3 auels Doy

This is not the Fourier transform mdds), but it is close. With a little thought, we see that we should
have applied the Fourier transform miodsing wrsfl modr 5 the primitiverth root of unity instead
of just wy, and similarly we should have use«{1 mods 45 the primitivesth root of unity. Then

—1 -1
m - %Z(wr(s M (ol ™Y xs(s ), +yr(r D))
Xy
1 Mexs(s™1)r+mgyr (r=1)s —1 -1
= LY Ixs(s )y +yr(r t)s)
v

rs—1

1 mz
= —= 2 .
\/r—sZ;wrsH
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