SUPERCONDUCTING QUBITS

Theory Collaborators
Prof. A. Blais (UdS)
Prof. A. Clerk (McGill)
Prof. L. Friedland (HUJI)
Prof. A.N. Korotkov (UCR)
Prof. S.M. Girvin (Yale)
Prof. L. Glazman (Yale)
Prof. A. Jordan (UR)
Dr. M. Sarovar (Sandia)
Prof. B. Whaley (UCB)

IRFAN SIDDIQI

Quantum Nanoelectronics Laboratory
Department of Physics, UC Berkeley
MICROWAVE OPTICS & SUPERCONDUCTING ARTIFICIAL ATOMS

ATOM/CAVITY

LIGHT SOURCE

DETECTOR

HOMODYNE

COUNTING

M. Hatridge et al., *Phys. Rev. B* 83 (2011)

Tunable f, ϕ

$|1\rangle$

4 – 20 GHz

$|0\rangle$
4-8 GHz LINEAR CAVITIES

3D Waveguide
Q ~ 10^6-10^9...

2D Planar
Q ~ 10^5-10^6...
THE NON-DISSIPATIVE JOSEPHSON JUNCTION OSCILLATOR

\[I(\delta) = I_0 \sin(\delta) \]
\[V(t) = \frac{\hbar}{2e} \frac{d}{dt}(\delta) \]
\[U(\delta) = -\frac{\hbar}{2e} I_0 \cos(\delta) \]

\[I_0 \sim nA \]

\[I_0 > \mu A \]

Quantized Levels

Non-linear Oscillator

\[U(\pm\hbar I_0/2e) \]
\[\frac{\delta}{2\pi} \]

\[\text{harmonic osc.} \]
\[\omega_p \]
Coherent control of macroscopic quantum states in a single-Cooper-pair box

Y. Nakamura*, Yu. A. Pashkin† & J. S. Tsai*

*NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305-8051, Japan
†CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan

Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture

Hanhee Paik,1 D. I. Schuster,1,2 Lev S. Bishop,1,3 G. Kirchmair,1 G. Catelani,1 A. P. Sears,1 B. R. Johnson,1,4 M. J. Reagor,1
L. Frunzio,1 L. I. Glazman,1 S. M. Girvin,1 M. H. Devoret,1 and R. J. Schoelkopf1

1Department of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA
2Department of Physics and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
3Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics,
University of Maryland, College Park, Maryland 20742, USA
4Baytheon BBN Technologies, Cambridge, Massachusetts 02138, USA
SUPERCONDUCTING TRANSMON QUBIT

\[L_J \sim 13 \text{ nH} \quad C \sim 70 \text{ fF} \]

\[\omega_{01} \approx \frac{1}{\sqrt{L_J C}} \]

\[\omega_{01} \neq \omega_{12} \]

- Tunable qubit frequency
- \(\omega_{01} \sim 5-8 \text{ GHz} \)
- \(T_1, T_2 \sim 100s \mu s \)

Josephson tunnel junctions

500 nm
EXPERIMENTAL SETUP

T = 4K

(~25 added photons)

INPUT

readout/qubit pulses in

OUTPUT

readout w/ qubit information

T = 0.02 K
SYSTEM NOISE TEMPERATURE

Signal power at paramp (dBm)

-145 -140 -135 -130 -125 -120 -115

System noise temperature (K)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Measurement cavity photon occupation

-145 -140 -135 -130 -125 -120 -115

System noise w/o paramp = 7K

○ Measured noise temperature

- Standard quantum limit
PARAMETRIC AMPLIFICATION

$L_J \sim 0.1 \text{ nH}$
$C \sim 10000 \text{ fF}$

Al Lumped LC Resonator
4-8 GHz
Coupled to 50 Ω
Q = 26
4th GENERATION CRYOPACKAGE

- Copper cover (prevents any coupling to box mode)
- Aluminum superconducting shield
- Removable CPW launch
- Magnet for tuning frequency
- Thermalizing strap
OUTLINE

• WEAK MEASUREMENT

• SINGLE QUBIT EXPERIMENTS
 – Individual Quantum Trajectories
 – Distribution of Quantum Trajectories

• TWO QUBIT MEASUREMENTS
 – Remote Entanglement
WEAK MEASUREMENT
QUBIT STATE ENCODED IN PHASE SHIFT

\[A \sin(\omega t + \phi) = A \sin(\omega t) \cos(\phi) + A \cos(\omega t) \sin(\phi) = [A \cos(\phi)] \sin(\omega t) + [A \sin(\phi)] \cos(\omega t) \]

PHASE SENSITIVE HOMODYNE MEASUREMENT
MEASUREMENT: COUPLE TO E-M FIELD OF CAVITY (Jaynes-Cummings)

Cavity Transmission

Frequency

|1⟩ | 0⟩ α n

VARY MEASUREMENT STRENGTH USING DISPERSIVE SHIFT & PHOTON NUMBER

NEED TO DETECT ~ SINGLE MICROWAVE PHOTONS in T₁ ~ μs
STRONG vs. WEAK MEASUREMENT

Strong

- READOUT/TOMOGRAPHY

Weak

- READOUT/TOMOGRAPHY

![Diagram showing the comparison between strong and weak measurement techniques in quantum mechanics, focusing on control parameters and homodyne voltage distributions.](image-url)
MEASUREMENT STRENGTH

\[S = \frac{\Delta V^2}{\sigma^2} \]

\[S = \frac{64\tau\chi^2\bar{n}\eta}{\kappa} \]

\(\tau \): measurement time
\(\chi \): dispersive shift
\(\bar{n} \): photon number
\(\kappa \): cavity decay rate
\(\eta \): detector efficiency

\[\eta = 0.49 \]
WHAT DO YOU DO WITH THIS WEAK MEASUREMENT SIGNAL?

• Control Signal for Feedback (eg. Stabilized Rab Osc.)

• Construct Trajectories

• Feed it to Another Qubit to Generate Entanglement
CAN WE TRACK A PURE STATE ON THE SURFACE OF THE BLOCH SPHERE?

OBSERVING SINGLE QUANTUM TRAJECTORIES OF A SUPERCONDUCTING QUBIT

BACKACTION OF SINGLE QUADRATURE MEASUREMENT

Cavity Output $\theta=0$

After Amplification $\theta=0$

Cavity Output $\theta=\pi/2$

After Amplification $\theta=\pi/2$

• Obtain qubit state information
• Tip Bloch vector

• Obtain cavity photon number information
• Rotate Bloch vector
• Prepare state along $+x$
• Continuous weak measurement
• Integrated readout is trajectory

$$V_m(t) = \frac{1}{\tau} \int_0^\tau V(t) dt$$
BAYESIAN UPDATE

Event:

A = Avalanche S = Snow > 10 feet

Likelihood: Prob. snow accompanied avalanche

Prior: Historic chance of an avalanche

Posterior: Chance of an avalanche given snow

\[
P(A|S) = \frac{P(S|A)P(A)}{P(S)}
\]

\[
P(|0\rangle | V) = \frac{P(V | |0\rangle) P(|0\rangle)}{P(V)}
\]
WEAK MEASUREMENT OF THE QUBIT STATE

- Initial state along $+X$
- Measure Z (phase quadrature)

Want to evaluate:

\[
\begin{align*}
\langle \sigma_Z \rangle |V_m & \overset{\text{def}}{=} Z^Z \\
\langle \sigma_X \rangle |V_m & \overset{\text{def}}{=} X^Z \\
\langle \sigma_Y \rangle |V_m & \overset{\text{def}}{=} Y^Z
\end{align*}
\]

Bayes Rule:

\[
\begin{align*}
Z^Z &= \tanh\left(\frac{V_m S}{2\Delta V}\right) \\
X^Z &= \sqrt{1 - \langle \sigma_Z \rangle^2} e^{-\gamma \tau} \\
\gamma &= 8\chi^2 \bar{n}(1 - \eta)/\kappa + 1/T_2^*
\end{align*}
\]
WEAK MEASUREMENT OF THE PHOTON NUMBER

\[\sigma_Z | V_m \equiv Z^\phi \]
\[\sigma_X | V_m \equiv X^\phi \]
\[\sigma_Y | V_m \equiv Y^\phi \]

WANT TO EVALUATE:

BAYES RULE:

\[X^\phi = \cos \left(\frac{SV_m}{2\Delta V} \right) e^{-\gamma \tau} \]
\[Y^\phi = \sin \left(\frac{SV_m}{2\Delta V} \right) e^{-\gamma \tau} \]
REALTIME TRACKING

- Prepare qubit along X axis
- Evolve under measurement
- Use Bayes rule to update our guess of the qubit state (dots)
- Perform tomography for each time step (solid)
DISTRIBUTION OF QUANTUM TRAJECTORIES
Initial State along $+x$

Integration time τ needed to resolve state: 1.25 μs
MEASUREMENT w. POSTSELECTION

|0⟩

Initial State along +x
Final State at z = -0.85

Can Identify Most Likely Path

Predict with Theory?
EXTREMIZING THE QUANTUM ACTION

Classical Example: Kramer’s Escape
- Consider paths to saddle point Λ
- Establish canonical phase space (p,q)
- Define action S
- Calculate most favorable path, etc…

Quantum Case for Pre/Post-Selected Trajectories:
- Consider paths connecting quantum state $q_I \rightarrow q_F$
- Double quantum state space (\rightarrow canonical)
- Express joint probability of measurement & trajectories as path integral
- Minimize action
 \rightarrow ODE for equation of motion

\[
\mathcal{P} = \delta^d(q_0 - q_I)\delta^d(q_n - q_F) \prod_{k=0}^{n-1} P(q_{k+1}, r_k | q_k).
\]

\[
\mathcal{P} = \int \mathcal{D}p e^{S} = \mathcal{D}p \exp\left[\int_0^T dt (-p \cdot \dot{q} + \mathcal{H}[q, p, r])\right]
\]

- Calculate statistical distributions
- Treat case of measurement backaction with control pulses Ω (Schrödinger dynamics)
Initial State along $+x$
Final State at $z = -0.85$

EOM for Optimized Path

\[
\begin{align*}
\dot{x} &= -\gamma x + \Omega z - xzr/\tau, \\
\dot{z} &= -\Omega y + (1 - z^2)r/\tau, \\
\dot{p}_x &= \gamma p_x + \Omega p_z + p_xzr/\tau, \\
\dot{p}_z &= -\Omega p_z + (p_xx + p_yy + 2pz - 1)r/\tau,
\end{align*}
\]

No Driving ($\Omega = 0$)

\[
\begin{align*}
\ddot{x}(t) &= e^{-\gamma t}\text{sech}(\ddot{t}/\tau) \\
\ddot{z}(t) &= \tanh(\ddot{t}/\tau)
\end{align*}
\]

r: detector output
max likelihood
QUANTUM TRAJECTORIES WITH RABI DRIVING
TRAJECTORIES w. RABI DRIVE: TOMOGRAPHY

- Trajectories w. Rabi drive: two step update (master eqn. + Bayes)
- Individual trajectories show “high purity”
DISTRIBUTION OF RABI TRAJECTORIES

Excellent agreement with ODE solutions
CAN WE ENTANGLE TWO REMOTE SUPERCONDUCTING QUBITS \textit{via} MEASUREMENT?

“TRACKING ENTANGLEMENT GENERATION BETWEEN TWO SPATIALLY SEPARATED SUPERCONDUCTING QUBITS”

N. Roch et al., \textit{PRL} \textbf{112}, 170501, 2014
TWO DISTANT QUBITS

Theoretical proposal:
Kerckoff, Bouten, Silberfarb & Mabuchi,
JOINT DISPERSIVE MEASUREMENT

Theory Proposal:
Kerckhoff et al., Phys Rev A 2009
JOINT DISPERSIVE MEASUREMENT

JOINT DISPERSIVE MEASUREMENT
JOINT DISPERSIVE MEASUREMENT
No classical OR quantum observer can discriminate eigenstates; system is **perturbed, but not projected**, by measurement.

Hatridge et al., *Science* 2013
MEASUREMENT HISTOGRAMS

Read out

Qubits pulses

$R_1^{0,\pi}$

$R_2^{0,\pi}$

ω_{RO}

ω_{qb1}

ω_{qb2}

$|\psi_i\rangle = |00\rangle$

$|\psi_i\rangle = |01\rangle$

$|\psi_i\rangle = |10\rangle$

$|\psi_i\rangle = |11\rangle$

Counts

$V_m (t_m = 0.65 \mu s) \text{ (Volts)}$
MEASUREMENT INDUCED ENTANGLEMENT

Quantifying the entanglement:

\[C = \max(0, |\rho_{01,10}| - \sqrt{\rho_{00,00}\rho_{11,11}}) \]
TRAJECTORIES

Ensemble measurements:

Single experimental realization:

Quantum trajectory reconstruction allows us to directly observe quantum state evolution under measurement.

Single Qubit Trajectories: Murch et al., Nature 2013
Weber et al., Nature 2014
PULSE SEQUENCE & ANALYSIS

Joint Readout

Digitize and Average

Qubit 1

\(R_y^{n/2} \)

Qubit 2

\(R_y^{n/2} \)

\[|\psi_i\rangle = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2} \]

\[V_m(t_m) = \frac{1}{t_m} \int_0^{t_m} V_{\text{inst}}(t) \, dt \]
QUANTUM BAYESIAN UPDATE

\[p(x|y) = \frac{p(x)p(y|x)}{p(y)} \]

\[p(|ij\rangle|V_m) = \frac{p(|ij\rangle)p(V_m|ij\rangle)}{p(V_m)} \]

\[f_{i,j}(V_m, t) = \frac{1}{\sqrt{2\pi}\sigma(t)} e^{-\frac{(V_m - S_{ij})^2}{2\sigma^2(t)}} \]

\[\sigma(t) = \frac{1}{2\sqrt{\eta_{meas}t}} \]
BAYESIAN TRAJECTORY RECONSTRUCTION
BAYESIAN TRAJECTORY RECONSTRUCTION
CONDITIONAL TOMOGRAPHY MAPPING
FUTURE DIRECTIONS

• IMPROVE DETECTION EFFICIENCY (ON-CHIP PARAMPS)

• TRAVELING WAVE AMPLIFIERS (BW ~ 2 GHz)

• FEEDBACK STABILIZATION OF ENTANGLEMENT

• WEAK MEASUREMENT IN QUBIT CHAINS
 → Adaptive State Estimation (cf. tomography)
 → Weak Value Amplification of Errors/Couplings
 → Information Flow / Equilibration / Perturbations
Dr. Shay Hacohen-Gourgy
Dr. David Toyli

Natania Antler
Andrew Eddins
Chris Macklin
Leigh Martin
Vinay Ramasesh
Mollie Schwartz
Steven Weber

Alumni

Dr. Kater Murch (Wash U)
Dr. Ofer Naaman (NGC)
Dr. Nico Roch (CNRS)
Dr. Andrew Schmidt (IBM)
Dr. R. Vijay (TIFR)

Michael Hatridge (Yale)
Edward Henry
Eli Levenson-Falk (Stanford)
Zlatko Minev (Yale)
Ravi Naik (U. Chicago)
Anirudh Narla (Yale)
Seita Onishi (UC Berkeley)
Daniel Slichter (NIST)
Yu-Dong Sun