Quantum Computation and Extended Church-Turing Thesis

0.1 Extended Church—Turing Thesis

The extended Church-Turing thesis is a foundational goledn computer science. It asserts that any "rea-
sonable” model of computation can be efficiently simulatecagtandard model such as a Turing Machine
or a Random Access Machine or a cellular automaton. Thisstifiesns the foundation of complexity the-
ory — for example ensuring that that the cld&§polynomial time) is well defined. But what do we mean
by "reasonable”? In this context, reasonable means "phlgicealizable in principle”. One constraint that
this places is that the model of computation must be digifdius analog computers are not reasonable
models of computation, since they assume infinite preciarthmetic. In fact, it can be shown that with
suitable infinite precision operations, an analog compeca@rsolve NP-Complete problems in polynomial
time. And an infinite precision calculator with operations¢;t=07?, can factor numbers in polynomial time.

We will see that quantum computers are exponentially moneepfoll than classical computers. But are they
a reasonable model of computation. To show this we must shatwte can implement (in principle) any
quantum circuit on a large number of qubits. There are tweeissve must tackle:

1. When we control a spin qubit (as we saw in the last chapteg buitable electromagnetic pulse, the
spin state changes from spin up to spin down or vice-versabbgraing/emitting a photon. Surely this
entangles the state of the qubit with that of the environpteos effectively measuring the state of the qubit.
This seems to undermine the very feature of quantum systemgives them exponential computational
resources.

2. Are quantum systems digital? At first glance they appedetanalog devices, since a quantum gate is
described by a unitary transformation, specified by compl@xbers. How robust is the computation to
errors in the implementation of each gate? i.e. to what pi@timust such a transformation be carried out
to get the same results.

02 Tensor Products

Consider two quantum systems - the first whtdistinguishable (classical) states (associated Hillpats
%), and the second withdistinguishable states (associated Hilbert spglde What is the Hilbert space as-
sociated with the composite system? We can answer thisigunest follows: the number of distinguishable
states of the composite systenkis— since for each distinct choice of basis (classical) qﬁate)f the first
system and basis stdt¢> of the second system, we have a distinguishable state obtheasite system.
Thus the Hilbert space associated with the composite syistéfi.

The tensor product is a general construction that shows baye from two vector spacés andW of di-
mensiork andl to a vector spac¥ @ W (pronouncedV tensotW”) of dimensionkl. Fix basegvy ), ..., |)
and|wi),...,|w) for V,W respectively. Then a basis fdr@W is given by

{vy®wj) :1<i<k1l<j<l},

so that dinfV @ W) = kl. So a typical element of @ W will be of the form¥;; ai; (|vi) ® |wj)). We can
define an inner product oh W by

(Ive) @ [wa), [V2) @ [Wa)) = ([va),[V2)) - (|wa), [W2)),
which extends uniquely to the whole spateW.

For example, considéf = 2 ® 2. V is a Hilbert space of dimension 4, ¥ €. So we can write00)
alternatively as0) ® |0). More generally, fon qubits we havé&s?® --- (ntimes)®--- €2 = ¢?". A typical
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element of this space is of the form

Ox|X).
xe{0,1}"

A word of caution: Not all elements &f ® W can be written agv) ® |w) for |v) €V, |w) € W. As an
example, consider the Bell statg’) = %(|00> +1]12)).

0.3 The Signiﬁcanee of Tensor Products

Classically, if we put together a subsystem that stérbgs of information with one that stordsbits of
information, the total capacity of the composite systet-id bits.

From this viewpoint, the situation with quantum systemsxgemmely paradoxical. We neddcomplex
numbers to describe the state of a k-level quantum systenv.ddosider a system that consists of a k-level
subsystem and an |-level subsystem. To describe the cotamysitem we neekl complex numbers. One
might wonder where nature finds the extra storage space whgutihese two subsystems together.

An extreme case of this phenomenon occurs when we considemabit quantum system. The Hilbert
space associated with this system is the n-fold tensor ptafiz’2 = ¥2". Thus nature must “remember”
of 2" complex numbers to keep track of the state ofagubit system. For modest values obf a few
hundred, 2 is larger than estimates on the number of elementary pestinlthe Universe.

This is the fundamental property of quantum systems thatesl in quantum information processing.

Finally, note that when we actually a measurenagubit quantum state, we see only raubit string - so we
can recover from the system omiyrather than 2, bits of information.

04 TGHSOI' pI'OdllCt Of operators

Suppose|v> and |W> are unentangled states @i and ¢, res pectively. The state of the combined
system igv) @ |w) on¢™. If the unitary operatoA is applied to the first subsystem, aBdo the second
subsystem, the combined state becomjes @ B|w).

In general, the two subsystems will be entangled with eablrpso the combine d state is not a tensor-
product state. We can still apphto the first subs ystem ar8lto the second subsystem. This gives the
operatorA® B on the combined system, defined on entangled states bylir@gending its actio n on
unentangled states.

(For example(A® B)(|0) ©|0)) =A|0) ®B|0). (A®B)(|1) ®|1)) =A|1) @B|1). Therefore, we define
(A®B)(75|00) +5|11)) to be 7 (A® B)[00) + J5(A® B)[11) = 7 (A|0) ® B|0) +A|1) ®B|1)).)
Let |er),...,|em) be a basis for the first subsystem, and whte- 5_; &;|e)(e;j| (thei,jth element of
Ais aj). Let|f),...,|fn) be a basis for the second subsystem , and \i&ite 37, _, b | fi)(fi|. Then a

basis for t he combined system|5> ® \ f,-> ,fori=1....mandj=1,...,n. The operatoA® B is

(sl o (gmlmc)

i%aijbk||a><ei|®‘fk><fl‘
= > aballe) @ [1))((e| @ (1)) -

A®B
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Therefore the(i,k), (j,1)th element ofA® B is ajjby. If w e order the basi$e ) ® |f;) lexicographically,

then the matri X foA® B is
a;1B a;2B
ang ang

in thei, jth subblock, we multiplyg;j by the matrix forB.

1 Is Quantum Computation Digital?

There is an issue as to whether or not quantum computingitaldig/e need only look at simple gates such
as the Hadamard gate or a rotation gate to find real values.

L L cosf sin@
_[v2 V2 — -
H= (\/ii —%) R = (sine cosf > @

When we implement a gate, how accurate does it need to be? Dwmedkinfinite precision to build this
gate properly? A paper by Shamir, “How To Factor On Your Clalicw,” shows that if we assume infinite
precision arithmetic, then some NP complete problems casohed in polynomial time. However, we
obviously cannot have infinite precision, so we must digitgantum computation in order to approximate
values such as/4/2. It turns out that log bits of precision are necessary.

Suppose we want to build a gate that rotates the inpu,dyut the best accuracy we can actually build is
rotation by8 + A0 (finite precision). Lel,,...,Un, be a set of ideal gates that implement an exact rotation
by 6. LetVi,...,Vn be a set of actual (constructible) gates that implementiootéy 6 + AB. Let |(p> be

the initial state. Letw> be the ideal output

@) =UiUz---Un|9), (2)
and let|y’) be the actual output
W) =ViV2---Vin| @) . (3)

The cIoser|t,U> and\t,U’} are to each other, the better the approximation. If we canoxppate each gate
to within € = O(1/m), then we can approximate the entire circuit with small caniserror.

Theorem 0.1: If |U; —Vj|| < & for 1<i<m,then|||g) —|¢)| < 5.
Proof:Consider the two hybrid states

W) = Ur-Ue 1V V@), and
[Wr1) = Uz -UViyr - Vin| 9).

Subtractg. 1 from ¢ to get

&) — | A1) = U1+ Uk 1(Mc—UiVics1 -+ Vin| @) (4)

Since the unitary transformations don't change the nornm@f/ector, the only term we need to consider is
Uk:1 — V1. But we have an upper bound on this, so we can conclude that

) = ) I < o 5)
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Another way to see this is the following picture. Applyingitany transformations t(me|cp> andvm\cp>
preserves the angle between them, which is defined to be the no

£

V| @)

[

Uz -Um-1Um|@)

Ur - -Um-1Vm|®)
€

We use the triangle inequality to finish to proof.

) - = IHwo>—\wm>
< Zjll\rn — |@s1) |
S moms<a
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