
Quantum Computation and Extended Church-Turing Thesis

0.1 Extended Church-Turing Thesis

The extended Church-Turing thesis is a foundational principle in computer science. It asserts that any ”rea-
sonable” model of computation can be efficiently simulated on a standard model such as a Turing Machine
or a Random Access Machine or a cellular automaton. This thesis forms the foundation of complexity the-
ory — for example ensuring that that the classP (polynomial time) is well defined. But what do we mean
by ”reasonable”? In this context, reasonable means ”physically realizable in principle”. One constraint that
this places is that the model of computation must be digital.Thus analog computers are not reasonable
models of computation, since they assume infinite precisionarithmetic. In fact, it can be shown that with
suitable infinite precision operations, an analog computercan solve NP-Complete problems in polynomial
time. And an infinite precision calculator with operations +, x, =0?, can factor numbers in polynomial time.

We will see that quantum computers are exponentially more powerful than classical computers. But are they
a reasonable model of computation. To show this we must show that we can implement (in principle) any
quantum circuit on a large number of qubits. There are two issues we must tackle:

1. When we control a spin qubit (as we saw in the last chapter) by a suitable electromagnetic pulse, the
spin state changes from spin up to spin down or vice-versa by absorbing/emitting a photon. Surely this
entangles the state of the qubit with that of the environment, thus effectively measuring the state of the qubit.
This seems to undermine the very feature of quantum systems that gives them exponential computational
resources.

2. Are quantum systems digital? At first glance they appear tobe analog devices, since a quantum gate is
described by a unitary transformation, specified by complexnumbers. How robust is the computation to
errors in the implementation of each gate? i.e. to what precision must such a transformation be carried out
to get the same results.

0.2 Tensor Products

Consider two quantum systems - the first withk distinguishable (classical) states (associated Hilbert space
C k), and the second withl distinguishable states (associated Hilbert spaceC l). What is the Hilbert space as-
sociated with the composite system? We can answer this question as follows: the number of distinguishable
states of the composite system iskl — since for each distinct choice of basis (classical) state

∣

∣i
〉

of the first
system and basis state

∣

∣ j
〉

of the second system, we have a distinguishable state of the composite system.
Thus the Hilbert space associated with the composite systemis C kl.

The tensor product is a general construction that shows how to go from two vector spacesV andW of di-
mensionk andl to a vector spaceV ⊗W (pronounced “V tensorW ”) of dimensionkl. Fix bases|v1〉, . . . , |vk〉
and|w1〉, . . . , |wl〉 for V,W respectively. Then a basis forV ⊗W is given by

{|vi〉⊗ |w j〉 : 1≤ i ≤ k,1≤ j ≤ l},

so that dim(V ⊗W) = kl. So a typical element ofV ⊗W will be of the form∑i j αi j(|vi〉⊗ |w j〉). We can
define an inner product onV ⊗W by

(|v1〉⊗ |w1〉, |v2〉⊗ |w2〉) = (|v1〉, |v2〉) · (|w1〉, |w2〉),

which extends uniquely to the whole spaceV ⊗W .

For example, considerV = C 2⊗C 2. V is a Hilbert space of dimension 4, soV ∼= C 4. So we can write|00〉
alternatively as|0〉⊗ |0〉. More generally, forn qubits we haveC 2⊗·· · (n times)⊗·· ·C 2 ∼= C 2n

. A typical
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element of this space is of the form

∑
x∈{0,1}n

αx|x〉.

A word of caution: Not all elements ofV ⊗W can be written as|v〉 ⊗ |w〉 for |v〉 ∈ V , |w〉 ∈ W . As an
example, consider the Bell state|φ+〉 = 1√

2
(|00〉+ |11〉).

0.3 The Significance of Tensor Products

Classically, if we put together a subsystem that storesk bits of information with one that storesl bits of
information, the total capacity of the composite system isk + l bits.

From this viewpoint, the situation with quantum systems is extremely paradoxical. We needk complex
numbers to describe the state of a k-level quantum system. Now consider a system that consists of a k-level
subsystem and an l-level subsystem. To describe the composite system we needkl complex numbers. One
might wonder where nature finds the extra storage space when we put these two subsystems together.

An extreme case of this phenomenon occurs when we consider ann qubit quantum system. The Hilbert
space associated with this system is the n-fold tensor product of C 2 ≡ C 2n

. Thus nature must “remember”
of 2n complex numbers to keep track of the state of ann qubit system. For modest values ofn of a few
hundred, 2n is larger than estimates on the number of elementary particles in the Universe.

This is the fundamental property of quantum systems that is used in quantum information processing.

Finally, note that when we actually a measure ann-qubit quantum state, we see only ann-bit string - so we
can recover from the system onlyn, rather than 2n, bits of information.

0.4 Tensor product of operators

Suppose
∣

∣v
〉

and
∣

∣w
〉

are unentangled states onC m and C n, res pectively. The state of the combined
system is

∣

∣v
〉

⊗
∣

∣w
〉

on C mn. If the unitary operatorA is applied to the first subsystem, andB to the second
subsystem, the combined state becomesA

∣

∣v
〉

⊗B
∣

∣w
〉

.

In general, the two subsystems will be entangled with each other, so the combine d state is not a tensor-
product state. We can still applyA to the first subs ystem andB to the second subsystem. This gives the
operatorA⊗B on the combined system, defined on entangled states by linearly extending its actio n on
unentangled states.

(For example,(A⊗B)(
∣

∣0
〉

⊗
∣

∣0
〉

) = A
∣

∣0
〉

⊗B
∣

∣0
〉

. (A⊗B)(
∣

∣1
〉

⊗
∣

∣1
〉

) = A
∣

∣1
〉

⊗B
∣

∣1
〉

. Therefore, we define
(A⊗B)( 1√

2

∣

∣00
〉

+ 1√
2

∣

∣11
〉

) to be 1√
2
(A⊗B)

∣

∣00
〉

+ 1√
2
(A⊗B)

∣

∣11
〉

= 1√
2

(

A
∣

∣0
〉

⊗B
∣

∣0
〉

+ A
∣

∣1
〉

⊗B
∣

∣1
〉)

.)

Let
∣

∣e1
〉

, . . . ,
∣

∣em
〉

be a basis for the first subsystem, and writeA = ∑m
i, j=1 ai j

∣

∣ei
〉〈

e j
∣

∣ (the i, jth element of
A is ai j). Let

∣

∣ f1
〉

, . . . ,
∣

∣ fn
〉

be a basis for the second subsystem , and writeB = ∑n
k,l=1 bkl

∣

∣ fk
〉〈

fl
∣

∣. Then a
basis for t he combined system is

∣

∣ei
〉

⊗
∣

∣ f j
〉

, for i = 1, . . . ,m and j = 1, . . . ,n. The operatorA⊗B is

A⊗B =

(

∑
i j

ai j
∣

∣ei
〉〈

e j
∣

∣

)

⊗
(

∑
kl

bkl
∣

∣ fk
〉〈

fl
∣

∣

)

= ∑
i jkl

ai jbkl
∣

∣ei
〉〈

e j
∣

∣⊗
∣

∣ fk
〉〈

fl
∣

∣

= ∑
i jkl

ai jbkl(
∣

∣ei
〉

⊗
∣

∣ fk
〉

)(
〈

e j
∣

∣ ⊗
〈

fl
∣

∣ ) .
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Therefore the(i,k),( j, l)th element ofA⊗B is ai jbkl . If w e order the basis
∣

∣ei
〉

⊗
∣

∣ f j
〉

lexicographically,
then the matri x forA⊗B is







a11B a12B · · ·
a21B a22B · · ·

...
...

. . .






;

in the i, jth subblock, we multiplyai j by the matrix forB.

1 Is Quantum Computation Digital?

There is an issue as to whether or not quantum computing is digital. We need only look at simple gates such
as the Hadamard gate or a rotation gate to find real values.

H =

(

1√
2

1√
2

1√
2

− 1√
2

)

Rθ =

(

cosθ −sinθ
sinθ cosθ

)

(1)

When we implement a gate, how accurate does it need to be? Do weneed infinite precision to build this
gate properly? A paper by Shamir, “How To Factor On Your Calculator,” shows that if we assume infinite
precision arithmetic, then some NP complete problems can besolved in polynomial time. However, we
obviously cannot have infinite precision, so we must digitize quantum computation in order to approximate
values such as 1/

√
2. It turns out that logn bits of precision are necessary.

Suppose we want to build a gate that rotates the input byθ , but the best accuracy we can actually build is
rotation byθ ±∆θ (finite precision). LetU1, . . . ,Um be a set of ideal gates that implement an exact rotation
by θ . Let V1, . . . ,Vm be a set of actual (constructible) gates that implement rotation by θ ±∆θ . Let

∣

∣φ
〉

be
the initial state. Let

∣

∣ψ
〉

be the ideal output
∣

∣ψ
〉

= U1U2 · · ·Um
∣

∣φ
〉

, (2)

and let
∣

∣ψ ′〉 be the actual output
∣

∣ψ ′〉 = V1V2 · · ·Vm
∣

∣φ
〉

. (3)

The closer
∣

∣ψ
〉

and
∣

∣ψ ′〉 are to each other, the better the approximation. If we can approximate each gate
to within ε = O(1/m), then we can approximate the entire circuit with small constant error.

Theorem 0.1: If ‖Ui −Vi‖ ≤ ε
4m for 1≤ i ≤ m, then ‖

∣

∣ψ
〉

−
∣

∣ψ ′〉‖ ≤ ε
4.

Proof:Consider the two hybrid states

∣

∣ψk
〉

= U1 · · ·Uk−1Vk · · ·Vm

∣

∣φ
〉

, and
∣

∣ψk+1
〉

= U1 · · ·UkVk+1 · · ·Vm

∣

∣φ
〉

.

Subtractφk+1 from φk to get
∣

∣φk
〉

−
∣

∣φk+1
〉

= U1 · · ·Uk−1(Vk −Uk)Vk+1 · · ·Vm
∣

∣φ
〉

(4)

Since the unitary transformations don’t change the norm of the vector, the only term we need to consider is
Uk+1−Vk+1. But we have an upper bound on this, so we can conclude that

‖
∣

∣ψk
〉

−
∣

∣ψk+1
〉

‖ ≤ ε
4m

. (5)
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Another way to see this is the following picture. Applying unitary transformations toUm

∣

∣φ
〉

andVm

∣

∣φ
〉

preserves the angle between them, which is defined to be the norm.

∣

∣φ
〉

U1 · · ·Um−1Um
∣

∣φ
〉

U1 · · ·Um−1Vm
∣

∣φ
〉

Vm
∣

∣φ
〉 Um

∣

∣φ
〉

ε

ε

We use the triangle inequality to finish to proof.

‖
∣

∣ψ
〉

−
∣

∣ψ ′〉‖ = ‖
∣

∣ψ0
〉

−
∣

∣ψm
〉

‖

≤
m−1

∑
i=0

‖
∣

∣φi
〉

−
∣

∣φi+1
〉

‖

≤ m · ε
4m

≤ ε
4
.

CS 347, Fall 2007, 4


	Extended Church-Turing Thesis
	Tensor Products
	The Significance of Tensor Products
	Tensor product of operators
	Is Quantum Computation Digital?

