C/CS/PhyS C191 Shor’s order (periocl) ﬁnding algorithm and factoring 10/30/07
Fall 2007 Lecture 19

| Readings

Benenti et al., Ch. 3.12 - 3.14
Stolze and Suter, Quantum Computing, Ch. 8.3

Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 5.2 - 5.3, 5.4.1 (NC use phase
estimation for this, which we present in the next lecture)

literature: Ekert and Jozsa, Rev. Mod. Ph§8,. 733 (1996)

2 Introduction

With a fast algorithm for the Quantum Fourier Transform in hand, it is clear that many useful applications
should be possible. Fourier transforms are typically used to extract the periodic components in functions,
so this is an immediate one. One very important example is finding the period of a modular exponential
function, which is also known as order-finding. This is a key element of Shor’s algorithm to factor large
integersN. In Shor’s algorithm, the quantum algorithm for order-finding is combined with a series of
efficient classical computational steps to make an algorithm that is overall polynomial in the input size
n = log:N, scaling a®©(n?lognloglogn. This is better than the best known classical algorithm, the number
field sieve, which scales superpolynomiallyrifi.e., asexgO(nY/3(logn)?/2)). In this lecture we shall first
present the quantum algorithm for order-finding and then summarize how this is used together with tools
from number theory to efficiently factor large numbers.

3 Shor’s order—ﬁnding a]gorithm

3.1 modular exponentiation

Recall the exponential functia¥. The modular exponential function is obtained by taking this function and
calculating the remainder on division B i.e., Fy(X) = @‘mod N The order of the modular exponential,
referred to as the order afmod Nor ord(a), is the smallest positive integesuch that

a'mod N=1

Equivalently, we can say thats the period of this function, since from the above equation we have

a = k-N+1
al'+1 — k'N'a+a
a™modN = amodN

wherek is some integer. SBy(X+r) = F(Nx), i.e.,r is the period ofy(x). Note thatr < N.
Three cases arise:

[EnY

C/CS/Phys C191, Fall 2007, Lecture 19

1. ris odd
2. ris even and'/2mod N= —1

3. ris even andi’/?mod N# —1.

Cases 1) and 2) are not relevant to factorizatiorNofbut in case 3) at least one of the two numbers
gcd(N, a2+ 1) is a non-trivial factor oN wheregcd(x, y) is the greatest common denominatoxaindy
(see Sectiod below).

How do we find orda) = r? The strategy is to calculation the functigg(x) for many values ok in parallel
and to use Fourier techniques to detect the period in the sequence of function values. In the next subsection
we show Shor’s quantum algorithm does this efficiently using the quantum fourier transform.

3.2 Period ﬁnding

The algorithm uses two registers:

« register 1 (source) hdé qubits and stores a numb@r= 2K, with N? < Q < 2N?, or equivalently a
number mod)

* register 2 (target) has at least= logzN qubits, so can storld or more basis states, or equivalently, a
number moaN.

Note that the total number of qubits required is then given by the sufn<ofL + 2logoN andn < log,N.

The algorithm can be decomposed into 6 steps.

1. Both registers are initialized in the sta® « |0).

2. The source register is transformed to an equal superposition ov@balsis states. This can be done
either by applying th& qubit Hadamard transform (see homework 3)

H®K‘X> = \/272 xy‘y
= H¥0) = ﬁg\w

or by applying the Fourier Transform

la) — 5 xp(Zm) o)

q=0
Q-1

d).
of=0

5\

=10)

5\

in both cases (what does this tell you about the relation of Hadamard to Fourier transform?) we get
the full qguantum state (of source and register)

Q-1
/0 q;)) ®10)

C/CS/Phys C191, Fall 2007, Lecture 19 2

3. Now we apply a gateJ, that implements the modular exponentiatepr> f(q) = a%mod N This is a
function that is easy to compute classically (it can be computed ipiagitiplications using repeated
squaring@® = ax a, a* = a’ x a%, a® = a* x a*, ... see Nielsen and Chuang, p. 228 for a detailed
analysis). As described abovi(g) hasr as its smallest period. Note thétis distinct on[0,r — 1]
(i.e., all values are different) since otherwise it would have a smaller period.

Applying the functionf to the contents of source register 1 and storing the result in target register 2,
i.e., we get

1<
N q;) [a%mod N).

HereQ > N2 values of the functiorf (q) are computed in parallel. Since< N, the periodr must
manifest itself in the resulting sequence of function values now stored in the second register. So there
can only be different function values.

4. Now we measure the second register. When we measure, we must get some value which has to be
one of ther distinct values off (q). Suppose itid (go). Then all superposed states of the first register
inconsistent with this measured value must disappear. For simplicity, we shall restrict our detailed
exposition to the case whe@= mr, i.e., there aren different values ofj which have the same value

of f(q).

Then exactlym= Q/r states of register 1 will contribute to the measured state of register 2, and after
this measurement the combined state of the two registers must be given by

Q/r-1

Z) |jir +0o) | f (q0))

5. We now have a periodic superposition of states in register 1, with peribBcom now on the second
register is irrelevant and we can drop it from discussion. The first register has a periodic superposition
whose period is the value that we wanted to compute in the first place. How do we get that period ?

Can we get anything simply by measuring the first register? No, since all we will get is a random
point, with no correlation across independent trials (becgy$e random). Instead, we first make a
guantum Fourier transform on register 1.

Applying the Fourier transform modul@ to state

1 it
[600) = —= Y [ir+00)
Q=
gives us
1= 1
7 %a)k‘b\k

wherew is a primitiverth root of unity,

C/CS/Phys C191, Fall 2007, Lecture 19 3

You may be wondering how the sum got changed f@/n terms to just terms. This was the result
of destructive interference in the QFT of the stm> = \jr +qo>. Here’s how it happened. First
rewrite |¢g,) as a sum over afp states:

0-1
‘¢QO> = ;g(a) ‘a>

whereg(a) = /r/Qif a—qo is a multiple ofr andg(a) = 0 otherwise. Then Fourier transforming
this moduloQ (this just means the Fourier transform b#ser with Q = 2K basis states), gives

Q-1 o
7Gx 2,4 appexp(2T I i

= \%; lzg(jr +qo)e><p<2m8r)c)] exp<2qu°C> c).

Now looking at the right hand side, you can see that witgQ is an integer, i.e.¢ is a multiple of
Q/r, the phase factor of each term in the sum inside the square brackets will be egual ow
this sum only contain®/r non-zero terms, because of the way in whigh) was defined. So the
square bracket term is then equal(@/r)+/r/Q = /Q/r. Taking the overall normalization factor

\/—1@ into account, this yields the valexp(2rigoc/Q) /+/r for the coefficient of basis state> in the

sum overc. On the other hand, wheu/Q is not an integer, the sum in the square brackets cancels to
zero (see Benenti p. 163 for an example). So the only states in the surotagrsurvive are those

for which c is a multiple ofQ/r. Thus the Fourier transformed state has pe€)gd, and furthermore

it has non-zero values only at valuesathat are multiples of this period. Writing= kQ/r, we get
then the QFT state

1 2migok
FTo|90) :ﬁk%exp< g)yk?>

which is what was given above. Note that the Fourier transform has moved the shiffyatuthe
index of the original state to a phase factor in the fourier transformed state.

6. Now we measure register 1. The measurement gives us a@aﬁje?, wherek is a random number
between 0 and r-1. Now we ha@ C, and hence also the rat@yQ =k/r. Now if gcd(k,r) =1, i.e.,
if kandr have no common divisors, we have the r&iQ as an irreducible fraction and can read off
the valuesk andr from numerator and denominator, respectively. See Benenti p. 163 for an example.
Now k is chosen at random by the measurement: for largée probability thagcd(k,r) =1 is
greater than Alogr (see Appendix A.3 in Ekert and Jozsa, RMP 68, 733 (1996)). So we assume that
this is the case and extract Then by repeating the calculati@(logr) < O(logN) times, one can
amplify the success probability of findimgto get as close to one as desired. So we have an efficient
determination of the ordet.

In the general case, whe@ % mr, one has a slightly modified analysis that results in the order being
determined to a high probability.

C/CS/Phys C191, Fall 2007, Lecture 19 4

4 Using order—ﬁnding to factor 1arge numbers N elqciciently
Once we have the ordenf amod N we first check ifr is even and’/2mod N+ —1 (case 3) above). If so,
then lets proceed with= a'/2. Sincey?’mod N= 1, theny? — 1 = (y+ 1)(y— 1) is divisible byN. SoN has

a common factor with either+ 1 ory— 1. The common factor must be one of greatest common divisors
gcd(N,y+1). These can be efficiently computed with Euclid’s algorithm (classical - what else!).

41 Fuclid’s algorithm for gcd(x,y)

Let X,y be 2 integersx >y andz = gcd(x,y). Then bothx andy and the numbers —y, x— 2y, ... are
multiples ofz. Therefore the remainder= x — ky < y in the division ofx by y is also a multiple oz. Now

if r =0, thenz=y and the problem is solved. So we only have to figure out how to get to zero remainder
from the starting integersandy. This is easy. We simply repeatedly take the remainder:

z=gcd(x,y) = ged(y,r1) = ged(ry,r2) = ged(ra, r3) = ... = ged(rn, rn),
wherer,r,,... are the successive remaindatsy ri_1 — kijy. The last non-zero remaindeyis z

4.2 Shor’s factoring algorithm

The overall quantum factoring algorithm is as follows:

. If N even, return the factor 2

. Determine whethe = a for integersa > 1 andb > 2: if yes, return the factoa

1

2

3. Randomly choosg between 1 andll — 1. If z= gcd(y,N) > 1, return the factor.

4. Use the order-finding algorithm to find the ordesf y mod N i.e.,r such thatmod N= 1.
5

. If ris even and//2mod N+ —1, then evaluatgcd(yf/2 +1,N). If one of these is a non-trivial factor
(i.e., other than 1), return that value as a factor. If not, go back to3sheal repeat.

The success rate of the last three steps must be reasonably high since this is a probabilistic algorithm. See
discussions in the texts and in the paper of Ekert and Jozsa.

C/CS/Phys C191, Fall 2007, Lecture 19 5

