C / CS / Phys 191 Shor’s order (period) ﬁnding algorithm and factoring 11 / 01 / 05
Fall 2005 Lecture 19

| Readings

Benenti et al., Ch. 3.12 - 3.14
Stolze and Suter, Quantum Computing, Ch. 8.3

Nielsen and Chuang, Quantum Computation and Quantum lafoym Ch. 5.2 - 5.3, 5.4.1 (NC use phase
estimation for this, which we present in the next lecture)

literature: Ekert and Jozsa, Rev. Mod. Phg&,. 733 (1996)

2 Introduction

With a fast algorithm for the Quantum Fourier Transform imdhait is clear that many useful applications
should be possible. Fourier transforms are typically usegktract the periodic components in functions,
so this is an immediate one. One very important example isnfinthe period of a modular exponential
function, which is also known as order-finding. This is a kégmeent of Shor’s algorithm to factor large
integersN. In Shor’s algorithm, the quantum algorithm for order-fimgliis combined with a series of
efficient classical computational steps to make an alguorithat is overall polynomial in the input size
n=logzN, scaling a©O(n?lognloglogn). This is better than the best known classical algorithmntiraber
field sieve, which scales superpolynomiallyrifi.e., asexp(O(n%/3(1ogn)%/3)). In this lecture we shall first
present the quantum algorithm for order-finding and thenrmsarize how this is used together with tools
from number theory to efficiently factor large numbers.

3 Shor’s order—ﬁnding algorithm

3.1 modular exponentiation

Recall the exponential functiaat. The modular exponential function is obtained by taking fbnction and
calculating the remainder on division BY; i.e., Fy(X) = @‘mod N. The order of the modular exponential,
referred to as the order afmod N or ord(a), is the smallest positive integeisuch that

amodN=1

Equivalently, we can say thatis the period of this function, since from the above equatierhave

a = k-N+1
atl = k-N-a+a
a*lmodN = amodN,

wherek is some integer. SBy(X+r) = F(Ny), i.e.,r is the period ofy(x). Note thatr <N.
Three cases arise:

[EEY

C/CS/Phys 191, Fall 2005, Lecture 19

1. ris odd
2. ris even and’/2mod N = —1

3. ris even and’/2mod N # —1.

Cases 1) and 2) are not relevant to factorizatiorNofout in case 3) at least one of the two numbers
ged(N,a/2 4+ 1) is a non-trivial factor oN whereged(x,y) is the greatest common denominatoxafndy
(see Sectiohl4 below).

How do we find orda) = r? The strategy is to calculation the functigg(x) for many values ok in parallel
and to use Fourier techniques to detect the period in theesegLof function values. In the next subsection
we show Shor’s quantum algorithm does this efficiently ushegquantum fourier transform.

3.2 Period ﬁnding

The algorithm uses two registers:

« register 1 (source) ha$ qubits and stores a numb@r= 2K, with N? < Q < 2N?, or equivalently a
number mod)

* register 2 (target) has at least 1og,N qubits, so can storld or more basis states, or equivalently, a
number modN.

Note that the total number of qubits required is then givethieysum oK < 1+ 2log,N andn < log,N.
The algorithm can be decomposed into 6 steps.

1. Both registers are initialized in the stéfe |0).

2. The source register is transformed to an equal supeiqosiver allQ basis states. This can be done
either by applying th& qubit Hadamard transform (see homework 3)

HOK|x) = \/Z_KZ 1)9y)
= H0) = ﬁg\w

or by applying the Fourier Transform

0 gl

=10) T?qgo‘(ﬂ

in both cases (what does this tell you about the relation afdd@ard to Fourier transform?) we get
the full guantum state (of source and register)

Q-1
o) q;) 9) ®10)

C/CS/Phys 191, Fall 2005, Lecture 19 2

3. Now we apply a gatd, that implements the modular exponentiatgpr- f(q) = a9mod N. This is a
function that is easy to compute classically (it can be cdembin logq multiplications using repeated
squaring,a® = ax a, a* = a x @, a® = a* x a%, ... see Nielsen and Chuang, p. 228 for a detailed
analysis). As described abovEq) hasr as its smallest period. Note thétis distinct on[0,r — 1]
(i.e., all values are different) since otherwise it woulgidna smaller period.

Applying the functionf to the contents of source register 1 and storing the restéirget register 2,
i.e., we get

1 ¢!
ﬁq;\qﬂaqmod N).

Here Q > N2 values of the functiorf (q) are computed in parallel. Sinece< N, the periodr must
manifest itself in the resulting sequence of function valanew stored in the second register. So there
can only be different function values.

4. Now we measure the second register. When we measure, weagatusome value which has to be
one of ther distinct values off (). Suppose itis(dp). Then all superposed states of the first register
inconsistent with this measured value must disappear. iFglisity, we shall restrict ourselves first
to the case wher® = nv, i.e., there aren different values ofj which have the same value 6{q).

Then exactlyQ/r states of register 1 will contribute to the measured stategibter 2, and after this
measurement the combined state of the two registers musedie oy

Q/r-1

Z) [ir +0o)| f(q0))

5. We now have a periodic superposition of state in registevith periodr. From now on the second
register is irrelevant and we can drop it from discussiore fiitst register has a periodic superposition
whose period is the value that we wanted to compute in thepliase. How do we get that period ?

Can we get anything simply by measuring the first register, Ait@e all we will get is a random
point, with no correlation across independent trials (bsegg is random). Instead, we first make a
quantum Fourier transform on register 1.

Applying the Fourier transform modul@ to state

=lo

-1

;ijqw

‘%0> =

i
=0

gives us

1 r—1

wherew is a primitiverth root of unity,

2ni
r

w=¢e

C/CS/Phys 191, Fall 2005, Lecture 19 3

You may be wondering how the sum got changed f@yn terms to just terms. This was the result
of destructive interference in the QFT of the stm> = \jr +qo>. Here’s how it happened. First
rewrite | @,) as a sum over afp states:

0-1
‘%o> = a; g(a)|a>

whereg(a) = 1/r/Qif a— o is a multiple ofr andg(a) = 0 otherwise. Then Fourier transforming
this moduloQ (this just means the Fourier transform b#ser with Q = 2K basis states), gives

Q-1 271 (i
o 5= ()

B[S oo(2) o

Now looking at the right hand side, you can see that Mg is an integer, i.e.¢ is a multiple of
Q/r, each term in the sum inside the square brackets will be equede. The square bracket term is
then equal t@Q and we obtairexp(2migec/Q) /+/T for the coefficient of basis state> . On the other
hand, whemrc/Q is not an integer, the sum in the square brackets cancelsdqsee Benenti p. 163
for an example). So the only states in the sum awhat survive are those for whiahis a multiple of
Q/r. Thus the Fourier transformed state has pe€@gd, and furthermore it has non-zero values only
at values ot that are multiples of this period. Writing= kQ/r, we get then the QFT state

Fol @) = frzl <2mq°k>\k>

which is what was given above. Note that the Fourier transfobas moved the shift valug in the
index of the original state to a phase factor in the fouriansformed state.

6. Now we measure register 1. The measurement gives us a@al:de?, wherek is a random number
between 0 and r-1. Now we ha@g C, and hence also the rat®/Q = k/r. Now if ged(k,r) =1,
i.e., if kandr have no common divisors, we can reduce the 1@}iQ to an irreducible fraction, e.g.,
1/r. See Benenti p. 163 for an example. Sihcis chosen at random in the measurement, then
the probability thaged(k,r) = 1 is greater than Aogr for larger values of (see Appendix A.3 in
Ekert %nd Jozsa, RMP 68, 733 (1996)). So one can repeat theyig@see that with big probability
ged(k, +) = 1.

Then by repeating the calculati@(logr) < O(logN) times, one can amplify the success probability
to as close to one as desired. So we have an efficient detdionitod the orderr.

In the general case, whé&n+# nr, one has a slightly modified analysis that results in therdodéeng deter-
mined to a high probability. Note, in class we looked alsohat glightly different procedure followed in
Suter’s book, where at step 4 one makes a Fourier Transfomagister 1 and then measures this. See Suter
Ch. 8.3.3.

C/CS/Phys 191, Fall 2005, Lecture 19 4

4 Using order—ﬁnding to factor large numbers N efEciently
Once we have the orderf amod N, we first check ifr is even and’/2mod N # —1 (case 3) above). If so,
then lets proceed with= a'/2. Sincey?mod N = 1, theny? — 1 = (y+ 1)(y— 1) is divisible byN. SoN has

a common factor with eithey+ 1 ory— 1. The common factor must be one of greatest common divisors
gcd(N,y+1). These can be efficiently computed with Euclid’s algorithatagsical - what else!).

41 Fuclid’s algorithm for gcd(X,y)

Let x,y be 2 integersx >y andz= gcd(zy). Then bothx andy and the numberg —y, x—2y, ... are
multiples ofz. Therefore the remainder= x— ky < y is also a multiple oz. Now if r = 0, thenz=y and
the problem is solved. So we only have to figure out how to geeto remainder from the starting integers
x andy. This is easy. We simply repeatedly take the remainder:

z=gcd(x,y) = ged(y,r1) = ged(rg,r2) = ged(ra, r3) = ... = ged(rn, rn),
wherery,r,,... are the successive remaindetss ri_1 — kjy. The last non-zero remaindgyis z

4.2 Shor’s factoring algorithm

The overall quantum factoring algorithm is as follows:

. If N even, return the factor 2

. Determine whetheX = aP for integersa > 1 andb > 2: if yes, return the factoa

1

2

3. Randomly choosgbetween 1 an®ll — 1. If z=gcd(y,N) > 1, return the factor.

4. Use the order-finding algorithm to find the ordeaf y mod N, i.e.,r such thatmod N = 1.
5

. If ris even ang//?mod N # —1, then evaluatged(y'/2 4 1,N). If one of these is a non-trivial factor
(i.e., other than 1), return that value as a factor. If notbgok to stepl3 and repeat.

The success rate of the last three steps must be reasongblgihce this is a probabilistic algorithm. See
discussions in the texts and in the paper of Ekert and Jozsa.

C/CS/Phys 191, Fall 2005, Lecture 19 5

	Readings
	Introduction
	Shor's order-finding algorithm
	modular exponentiation
	Period finding

	Using order-finding to factor large numbers N efficiently
	Euclid's algorithm for gcd(x,y)
	Shor's factoring algorithm

