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| Readings

Benenti et al., Ch. 3.9-3.9.2
Stolze and Suter, Quantum Computing, Ch. 8.2 - 8.2.5)
Nielsen and Chuang, Quantum Computation and Quantum lafiwm Ch. 1.4.3, 1.4.4

2 Deutsch’s algorithm

Deutsch’s algorithm is a perfect illustration of all thamgaculous, subtle, and disappointing about quantum
computers. It calculates a solution to a problem faster #irgnclassical computesver can. It illustrates
the subtle interaction of superposition, phase-kick baokl, interference. Finally, unfortunately, is solves a
completely pointless problem.

Deutsch’s algorithm answers the following question: sgeddx) is either constant or balanced, which one
is it? If f(x) were constant then for alithe result is either O or 1. However, fifx) were balanced then for
one half of the inputd (x) is 0, and for the other half it is 1 (which x’s correspond to QLas completely
arbitrary). To answer this question classically, we cleated to query the function for both= 0 and

x =1, hence two queries are required. Using a quantum algoitthms out that we can solve the problem
with just one query of the function.
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Figure 1. IfUs implementsf, x is input as(|0) +|1)) /v/2 andy as |0), then the output is equal to
(|0, f(0)) +[1,f(1))) /v2. This illustrates the basic feature of parallelism in quanalgorithms.

We begin by illustrating how superposition of quantum statatesquantum parallelism or the ability to
compute on many states simultaneously.

Given a functionf (x) : {0, 1} — {0,1} using a quantum computer, use two quihity’) and transform them
into \x,y@ f(x)> (where represents addition modular two). We use two qubits sincevish to leave

the inputx or the query register, “un-changed”. The second qubihcts as a result register. Liét be the

unitary transform that implements this. This is illustchte Figure 1.

Suppose we wish to calculaf¢0), then we could inpux as|0> , andy, our output register, d@> and apply
theU; transform.

[EnY
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The input is written ag0) ® |0) = |0,0).
The output is transformed Hy; to be|0,0® f(0)).

Suppose we wish to calculaf¢l), then we could input as|1> , andy, our output register, 49> and apply
theU; transform.

The input is written agl) ® |0) = |1,0).
The output is transformed Hy; to be|1,0® f(1)).

But this is not a classical computer — we can actually queeyrésults of 0 and 1 simultaneously using
quantum parallelism. For this, Igtequal(|0) + |1)) /v/2 andy equal .

The input|w1> _ 070>;§1,o>
The output]yp) = w

— Remarkablels is applied to\0> and|1> simultaneously! This is known as quantum parallelism.

— Problem: sounds good, but measurement produces ¢®hﬁ(|0)> or |1, f(1)). Hence we need to be
clever about what type of question we ask, and how we go abdn#ioting the answer.

The solution is to use another quantum mechanical propetrference.

|0> H X X H
Uf
|1> H y vy f(x)

Figure 2: Quantum circuit for Deutsch’s algorithm, testinbether a Boolean function on one qubit is
constant or balanced.

Adide:
Deutsch’s algorithm, as all known quantum algorithms thawige exponential speedip
over classical systems do, answers a question about a glady@rty of a solution space.
These are often callepromise problems, whereby the structure of the solution space is
promised to be of some form and by carefully using superiposientanglement and inter-
ference we can extract information about that structures rElason these problems obtain
exponential improvement over all known classical algonishis that classically one has|to
calculate every point in the solution space in order to okfiali knowledge about this strug-
ture. Quantum mechanically we calculate every point usirmgntum parallelism. Unfortu-
nately this is oftemot how most algorithms are phrased. Usually we work with pnoisie
that are phrased of the form “whagives a value off (x) with the desired property?” Thus
far, quantum computers can only provide square-root imgr®nt to such query-based
problems.

Let| o) be the initial state vector arjgy ) be the state of the system prior to applyldg Let |y5,) be the
state of the system after applyikly and \ Lp3> be the state of the system prior to measurement.
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Input: |¢go) =|0,1)
It may seem strange to start out with a result register of teawsof 0, but ignore this for now, we will return
to it shortly. Apply theH gate to the query and result registers to obtain:

) = 7 (10) +12)) 7 (10) - [1))
The first qubit is referred to as the 'query’ qubit, the secaadhe 'result’ qubit. (Note that the term 'query’

is used in two different respects here - querying the functi(x), i.e., evaluating it, and querying the qubit
1, i.e., measuring it.

Now, lets examing @ f(x):
Supposef (x) = 0 theny @ f(x) = yo 0= \i@ (|0®0) —|180)) = % (Jo)y — 1))
Supposef (x) = 1 theny® f(x) =yd 1= \i@ (|o®1) —[101)) = % (—|0)y +11))

Since+1 = (—1)"™®, we can compactly describe this behavior for both instamgtfsthe following single
formula:

ye f(x)=(-1)™ % (j0) —[1))
Thus,Us transforms|x) % (|0y —|1)) into:
(1" % (o) ~[1))
Or we can write it all out in detail:
Ur [ (10) + 1)) & (10) = [2))] = £ [(="]0) ([0) = [1)) + (=D @ 1) (j0) — |1))]
Thus is an example of backward sign propagation or kick-lmdgihase from qubit 2 to qubit 1 - actually a

very simple one since the phase is only a global phase henesgidint. But below we shall see how it gets
movedinto the state of qubit 1, resulting in a real overall kick-badakfrqubit 2 to qubit 1.

Now we look at what this state is for the two instanced tleing constant or balanced. First, suppbss
constant, that i$(0) = f(1). Then:

3(=1'0) (j0) ~ 1)) + (=1 ®[1) (j0) - [1))]
=3="[[0) (1) = [2)) +[1) (|0) ~ [2))]

= %HO> (10) = 12)) +12) ([0) —[2))]

=7 (10 +[1)) 7 (19 -[1)

Since the first qubit is |rj +> we can anticipate that performing a Hadamard gate on qubiillth&n
transform this td0) .

Suppose now instead thétis balanced, that i$(0) # f(1), then:
3[(-1'0) (jo) - |1)) +<—1>f<1>\1> (10) - [2))]
[(=D@0) (j0) — [1)) +(~1) x (- @]1) (o) - |1))]

=3(=1)"[|0) (o) - \>)—|1> (10) =11))]
[10) (10) = [1)) = |2) (|o) ~[L))]

(0 =11) 5 (0 =[1))
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Since the first qubit is irﬁ — > here, we can anticipate that performing a Hadamard gate lom fjun this
case will transform this t¢1> .

So it seems we can get orthogonal states for qubit 1 for thedlifferent instances. So lets now run tb@
qubit through arH gate to ge1w3>:

) — +510) (|0) —[1)) if f(0)=f(1)
VT 2En (0 -[1) if fOA1)
Since in our casé (0) ¢ f(1) =0« f(0) = f(1) we can write this as

|ys) = £[f(0)& f(1)) [%}

Hence it is possible to measuxdthe first, 'query’, qubit) to findf (0) @ f(1).

Adide:
Note thatf (0) & f(1) is a global property of (x). Classically it would require two evaly-
ations of f (x) to find this answer. Using a quantum computer we are able laaeaboth
answers simultaneously and then interfere these answe@mbine them together. An-
other more subtle point is that the phase of the result quansters to the query qubit. This
is a special case of phase kick back. In effect, the queryt gquebé as a control of whether
or not to flip the result qubit. While the result qubit is pdiahy flipped by the state gf
the query qubit, the phase of the query qubit is altered byptase of the result (or target)
qubit! This property is also critical to Shor’s algorithm.

3 Deutsch-Josza algorithm

The Deutsch-Jozsa algorithm is a generalization of Deigtsdtjorithm to Boolean functions amqubits.

Supposef (x) : {2"} — {0,1} and that f is either constant or balanced. The goal is deternvhich one it
is. Classically it is easy to see that this would require (orsv case) querying just over half the solution
space, or 2/2+ 1 queries. The Deutsch-Jozsa algorithm answers this questth justone query!

00...0> /- Ho T Ho T

Uf
>——HHy  y®iK

Figure 3: Quantum circuit for the Deutsch-Jozsa algoritanm-qubit generalization of Deutsch’s algorithm

We needn qubits and one additional qubit: the former are the analogarid constitute a query register,
while the latter corresponds to the result qubih the Deutsch algorithm. The starting state of the system
|yo) is fairly straightforward

|4o0) =10)“"|1)
The symbolic notatio¢0> ®N simply means consecutivef0> qubits.
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We then apply thé1®" transform. This symbol means to apply tHeyate to each of the qubits (in parallel,
although this does not matter. The key is only thathhgate is applied once to each qubit). In Homework
3 you showed that this transform is:
. IJ

Henfi) = 21 \@ i)
Hereis another proof of thisimportant relation: Consider first arH gate applied to a single qulqix>.
We need to multiply the componelht> by 1if x=0 and by—1 if x= 1. these two procedures can be
combined as in the Deutsch algorithm above by simply myitigl by the factor(—1)7®. Then

Hx) = (\0> (=[1))

S\

- U

where herez spans only two values, 0 and 1. This seems like notationalkilvéeo represent a simple
Hadamard gatei. However, when we generalize the latterH6" the notation pays off since the above
form can immediately be generalized by summing over alliptsssombinations of qubit basis states, i.e.,
over alln-qubit state&:

®n _ 1)%2

HEMR) = @ S (~1*72).

Each qubit contributes an independent phase term, leadlithge tdot produck - Z.

Coming back to Deutsch-Jozsa, we now transfq)ul@ with the n-qubit and 1-qubit Hadamard gates as:
|4n) = H®"|0)“"H|1)

s

Note that the notatiof0,1}" means all possible bit strings of sineFor example, fon = 2, we have “00”,
“01”, “10”, and “11".

We then apply the transforti; that implementsf (x) to obtain the state,):

02) :Xegl}n (_j)z—fn(X) " [\o>}2\1>]

Finally we apply anothe ®" transform to obtaiﬁw3> X

R e R

ze{0,1}"xe{0,1}"

The key to the Deutsch-Jozsa algorithm is the following eatubtle point. We measure the probability
amplitude ofz = |O> ®n the all zero state. (If the qubits are spins in a magnetid,figlis would be the
ground state - correct?) Consider the instance whem is constant. Since = |O> ®N x-zmust also be

equal to zero and hen¢e-1)**" ' is either—1 or +1 for all values of x, where-1 holds forf (x) = 1 and
1 holds forf (x) = 0. In this case the amplitude far= |0) “" is
1

+ x

xe{0,1}"

==+1
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which exhausts the probability amplitude fgg. In other words, sincels is normalized to 1 and the
amplitude ofz = \0> ®n already gives probability 1, there can be no other compoirent; - all other
amplitudes must be zero. Hence when you measure the fipgbits in the query register, you will obtain a
zero (or more correctly,“®).

Conversely, iff (x) is balanced thef—1)*%""™ will be +1 for some values of and—1 for other values of

X. This is where the balanced requirement comes into playceSall possible x’ values are considered and
the function is perfectly balanced, one must have equal eusnbf+1 and—1. The amplitude of the all
zero state = |0) “"is then:

+1 -1
Toyy =0
277

wherex; is the set of x’s such thdt(x) is equal to 0 and is the set of x's wherd (x) is equal to 1. Hence
you will not measure the all zero eigenvalu€"@vhen f(x) is balanced since the probability amplitudes
interfere destructively to produce a net probability amuplé of zero for the all zero state.

What will be measured if the function is balanced? Anythirgept the all zero eigenvalue. At least one
qubit will result in a measurement value of 1.

Note that this algorithm does require only one queryf ©f), i.e., ofU¢, but it requires the ability to make
ann-qubit measurement.
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