
C/CS/Phys 191 Deutsch and Deutsch-Josza algorithms 10/25/05
Fall 2005 Lecture 17

1 Readings
Benenti et al., Ch. 3.9 - 3.9.2

Stolze and Suter, Quantum Computing, Ch. 8.2 - 8.2.5)

Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 1.4.3, 1.4.4

2 Deutsch’s algorithm
Deutsch’s algorithm is a perfect illustration of all that ismiraculous, subtle, and disappointing about quantum
computers. It calculates a solution to a problem faster thanany classical computerever can. It illustrates
the subtle interaction of superposition, phase-kick back,and interference. Finally, unfortunately, is solves a
completely pointless problem.

Deutsch’s algorithm answers the following question: suppose f (x) is either constant or balanced, which one
is it? If f (x) were constant then for allx the result is either 0 or 1. However, iff (x) were balanced then for
one half of the inputsf (x) is 0, and for the other half it is 1 (which x’s correspond to 0 or1 is completely
arbitrary). To answer this question classically, we clearly need to query the function for bothx = 0 and
x = 1, hence two queries are required. Using a quantum algorithmit turns out that we can solve the problem
with just one query of the function.

y      f(x)

Uf

y

xx

Figure 1: If U f implements f , x is input as
(
∣

∣0
〉

+
∣

∣1
〉)

/
√

2 andy as
∣

∣0
〉

, then the output is equal to
(∣

∣0, f (0)
〉

+
∣

∣1, f (1)
〉)

/
√

2. This illustrates the basic feature of parallelism in quantum algorithms.

We begin by illustrating how superposition of quantum statecreatesquantum parallelism or the ability to
compute on many states simultaneously.

Given a functionf (x) : {0,1}→ {0,1} using a quantum computer, use two qubits
∣

∣x,y
〉

and transform them
into

∣

∣x,y⊕ f (x)
〉

(where⊕ represents addition modular two). We use two qubits since wewish to leave
the inputx or the query register, “un-changed”. The second qubit,y, acts as a result register. LetU f be the
unitary transform that implements this. This is illustrated in Figure 1.

Suppose we wish to calculatef (0), then we could inputx as
∣

∣0
〉

, andy, our output register, as
∣

∣0
〉

and apply
theU f transform.

C/CS/Phys 191, Fall 2005, Lecture 17 1



The input is written as
∣

∣0
〉

⊗
∣

∣0
〉

=
∣

∣0,0
〉

.

The output is transformed byU f to be
∣

∣0,0⊕ f (0)
〉

.

Suppose we wish to calculatef (1), then we could inputx as
∣

∣1
〉

, andy, our output register, as
∣

∣0
〉

and apply
theU f transform.

The input is written as
∣

∣1
〉

⊗
∣

∣0
〉

=
∣

∣1,0
〉

.

The output is transformed byU f to be
∣

∣1,0⊕ f (1)
〉

.

But this is not a classical computer – we can actually query the results of 0 and 1 simultaneously using
quantum parallelism. For this, letx equal

(
∣

∣0
〉

+
∣

∣1
〉)

/
√

2 andy equal 0.

The input
∣

∣ψ1
〉

=

∣

∣0,0
〉

+
∣

∣1,0
〉

√
2

The output
∣

∣ψ2
〉

=

∣

∣0, f (0)
〉

+
∣

∣1, f (1)
〉

√
2

−→ Remarkable:U f is applied to
∣

∣0
〉

and
∣

∣1
〉

simultaneously! This is known as quantum parallelism.

−→ Problem: sounds good, but measurement produces either
∣

∣0, f (0)
〉

or
∣

∣1, f (1)
〉

. Hence we need to be
clever about what type of question we ask, and how we go about extracting the answer.

The solution is to use another quantum mechanical property:interference.

|0> H

H

H

Uf

y

xx

y      f(x)|1>

Figure 2: Quantum circuit for Deutsch’s algorithm, testingwhether a Boolean function on one qubit is
constant or balanced.

Aside:
Deutsch’s algorithm, as all known quantum algorithms that provide exponential speedup
over classical systems do, answers a question about a globalproperty of a solution space.
These are often calledpromise problems, whereby the structure of the solution space is
promised to be of some form and by carefully using superposition, entanglement and inter-
ference we can extract information about that structure. The reason these problems obtain
exponential improvement over all known classical algorithms is that classically one has to
calculate every point in the solution space in order to obtain full knowledge about this struc-
ture. Quantum mechanically we calculate every point using quantum parallelism. Unfortu-
nately this is oftennot how most algorithms are phrased. Usually we work with problems
that are phrased of the form “whatx gives a value off (x) with the desired property?” Thus
far, quantum computers can only provide square-root improvement to such query-based
problems.

Let
∣

∣ψ0
〉

be the initial state vector and
∣

∣ψ1
〉

be the state of the system prior to applyingU f . Let
∣

∣ψ2
〉

be the
state of the system after applyingU f and

∣

∣ψ3
〉

be the state of the system prior to measurement.

C/CS/Phys 191, Fall 2005, Lecture 17 2



Input:
∣

∣ψ0
〉

=
∣

∣0,1
〉

It may seem strange to start out with a result register of 1 instead of 0, but ignore this for now, we will return
to it shortly. Apply theH gate to the query and result registers to obtain:

∣

∣ψ1
〉

= 1√
2

(
∣

∣0
〉

+
∣

∣1
〉) 1√

2

(
∣

∣0
〉

−
∣

∣1
〉)

The first qubit is referred to as the ’query’ qubit, the secondas the ’result’ qubit. (Note that the term ’query’
is used in two different respects here - querying the function f (x), i.e., evaluating it, and querying the qubit
1, i.e., measuring it.

Now, lets examiney⊕ f (x):

Supposef (x) = 0 theny⊕ f (x) = y⊕0 = 1√
2

(
∣

∣0⊕0
〉

−
∣

∣1⊕0
〉)

= 1√
2

(
∣

∣0
〉

−
∣

∣1
〉)

Supposef (x) = 1 theny⊕ f (x) = y⊕1 = 1√
2

(∣

∣0⊕1
〉

−
∣

∣1⊕1
〉)

= 1√
2

(

−
∣

∣0
〉

+
∣

∣1
〉)

Since±1 = (−1) f (x), we can compactly describe this behavior for both instanceswith the following single
formula:

y⊕ f (x) = (−1) f (x) 1√
2

(
∣

∣0
〉

−
∣

∣1
〉)

Thus,U f transforms
∣

∣x
〉

1√
2

(
∣

∣0
〉

−
∣

∣1
〉)

into:

(−1) f (x)∣
∣x

〉 1√
2

(
∣

∣0
〉

−
∣

∣1
〉)

Or we can write it all out in detail:

U f

[

1√
2

(
∣

∣0
〉

+
∣

∣1
〉) 1√

2

(
∣

∣0
〉

−
∣

∣1
〉)

]

= 1
2

[

(−1) f (0)
∣

∣0
〉 (

∣

∣0
〉

−
∣

∣1
〉)

+(−1) f (1)
∣

∣1
〉 (

∣

∣0
〉

−
∣

∣1
〉)

]

Thus is an example of backward sign propagation or kick-backof phase from qubit 2 to qubit 1 - actually a
very simple one since the phase is only a global phase here at this point. But below we shall see how it gets
movedinto the state of qubit 1, resulting in a real overall kick-back from qubit 2 to qubit 1.

Now we look at what this state is for the two instances off being constant or balanced. First, supposef is
constant, that isf (0) = f (1). Then:

1
2

[

(−1) f (0)
∣

∣0
〉 (

∣

∣0
〉

−
∣

∣1
〉)

+(−1) f (1)
∣

∣1
〉 (

∣

∣0
〉

−
∣

∣1
〉)

]

= 1
2(−1) f (0) [

∣

∣0
〉 (

∣

∣0
〉

−
∣

∣1
〉)

+
∣

∣1
〉 (

∣

∣0
〉

−
∣

∣1
〉)]

= ±1
2

[∣

∣0
〉 (∣

∣0
〉

−
∣

∣1
〉)

+
∣

∣1
〉 (∣

∣0
〉

−
∣

∣1
〉)]

= ± 1√
2

(
∣

∣0
〉

+
∣

∣1
〉)

1√
2

(
∣

∣0
〉

−
∣

∣1
〉)

Since the first qubit is in
∣

∣ +
〉

we can anticipate that performing a Hadamard gate on qubit 1 will then
transform this to

∣

∣0
〉

.

Suppose now instead thatf is balanced, that isf (0) 6= f (1), then:

1
2

[

(−1) f (0)
∣

∣0
〉 (

∣

∣0
〉

−
∣

∣1
〉)

+(−1) f (1)
∣

∣1
〉 (

∣

∣0
〉

−
∣

∣1
〉)

]

= 1
2

[

(−1) f (0)
∣

∣0
〉 (∣

∣0
〉

−
∣

∣1
〉)

+(−1)× (−1) f (0)
∣

∣1
〉 (∣

∣0
〉

−
∣

∣1
〉)

]

= 1
2(−1) f (0) [

∣

∣0
〉 (∣

∣0
〉

−
∣

∣1
〉)

−
∣

∣1
〉 (∣

∣0
〉

−
∣

∣1
〉)]

= ±1
2

[
∣

∣0
〉 (

∣

∣0
〉

−
∣

∣1
〉)

−
∣

∣1
〉 (

∣

∣0
〉

−
∣

∣1
〉)]

= ± 1√
2

(∣

∣0
〉

−
∣

∣1
〉)

1√
2

(∣

∣0
〉

−
∣

∣1
〉)

C/CS/Phys 191, Fall 2005, Lecture 17 3



Since the first qubit is in
∣

∣−
〉

here, we can anticipate that performing a Hadamard gate on qubit 1 in this
case will transform this to

∣

∣1
〉

.

So it seems we can get orthogonal states for qubit 1 for the twodifferent instances. So lets now run the
∣

∣x
〉

qubit through anH gate to get
∣

∣ψ3
〉

:

∣

∣ψ3
〉

=
± 1√

2

∣

∣0
〉 (

∣

∣0
〉

−
∣

∣1
〉)

i f f (0) = f (1)

± 1√
2

∣

∣1
〉 (

∣

∣0
〉

−
∣

∣1
〉)

i f f (0) 6= f (1)

Since in our casef (0)⊕ f (1) = 0⇔ f (0) = f (1) we can write this as

∣

∣ψ3
〉

= ±
∣

∣ f (0)⊕ f (1)
〉

[
∣

∣0
〉

−
∣

∣1
〉

√
2

]

Hence it is possible to measurex (the first, ’query’, qubit) to findf (0)⊕ f (1).

Aside:
Note that f (0)⊕ f (1) is a global property off (x). Classically it would require two evalu-
ations of f (x) to find this answer. Using a quantum computer we are able to evaluate both
answers simultaneously and then interfere these answers tocombine them together. An-
other more subtle point is that the phase of the result qubit transfers to the query qubit. This
is a special case of phase kick back. In effect, the query qubit acts as a control of whether
or not to flip the result qubit. While the result qubit is potentially flipped by the state of
the query qubit, the phase of the query qubit is altered by thephase of the result (or target)
qubit! This property is also critical to Shor’s algorithm.

3 Deutsch-Josza algorithm
The Deutsch-Jozsa algorithm is a generalization of Deutsch’s algorithm to Boolean functions onn qubits.

Supposef (x) : {2n} → {0,1} and that f is either constant or balanced. The goal is determine which one it
is. Classically it is easy to see that this would require (in worst case) querying just over half the solution
space, or 2n/2+1 queries. The Deutsch-Jozsa algorithm answers this question with justone query!

|00....0>

H

H
n

H
n

Uf

y

xx

y      f(x)|1>

Figure 3: Quantum circuit for the Deutsch-Jozsa algorithm,ann-qubit generalization of Deutsch’s algorithm

We needn qubits and one additional qubit: the former are the analog ofx and constitute a query register,
while the latter corresponds to the result qubity in the Deutsch algorithm. The starting state of the system
∣

∣ψ0
〉

is fairly straightforward
∣

∣ψ0
〉

=
∣

∣0
〉⊗n

∣

∣1
〉

The symbolic notation
∣

∣0
〉⊗n simply meansn consecutive

∣

∣0
〉

qubits.

C/CS/Phys 191, Fall 2005, Lecture 17 4



We then apply theH⊗n transform. This symbol means to apply theH gate to each of then qubits (in parallel,
although this does not matter. The key is only that theH gate is applied once to each qubit). In Homework
3 you showed that this transform is:

H⊗n
∣

∣i
〉

= ∑ j
(−1)i· j
√

2n

∣

∣ j
〉

Here is another proof of this important relation: Consider first anH gate applied to a single qubit
∣

∣x
〉

.
We need to multiply the component

∣

∣1
〉

by 1 if x = 0 and by−1 if x = 1: these two procedures can be
combined as in the Deutsch algorithm above by simply multiplying by the factor(−1) f (x). Then

H
∣

∣x
〉

=
1√
2

(
∣

∣0
〉

+(−1)x
∣

∣1
〉)

=
1√
2
∑

z
(−1)xz

∣

∣z
〉

where herez spans only two values, 0 and 1. This seems like notational overkill to represent a simple
Hadamard gate,H. However, when we generalize the latter toH⊗n the notation pays off since the above
form can immediately be generalized by summing over all possible combinations of qubit basis states, i.e.,
over alln-qubit states~z:

H⊗n
∣

∣~x
〉

=
1√
2n ∑

~z

(−1)~x·~z
∣

∣~z
〉

.

Each qubit contributes an independent phase term, leading to the dot product~x ·~z.
Coming back to Deutsch-Jozsa, we now transform

∣

∣ψ0
〉

with then-qubit and 1-qubit Hadamard gates as:
∣

∣ψ1
〉

= H⊗n
∣

∣0
〉⊗nH

∣

∣1
〉

= ∑
x∈{0,1}n

1√
2n

∣

∣x
〉

[

∣

∣0
〉

−
∣

∣1
〉

√
2

]

Note that the notation{0,1}n means all possible bit strings of sizen. For example, forn = 2, we have “00”,
“01”, “10”, and “11”.

We then apply the transformU f that implementsf (x) to obtain the state
∣

∣ψ2
〉

:

∣

∣ψ2
〉

= ∑
x∈{0,1}n

(−1) f (x)

√
2n

∣

∣x
〉

[

∣

∣0
〉

−
∣

∣1
〉

√
2

]

Finally we apply anotherH⊗n transform to obtain
∣

∣ψ3
〉

:

∣

∣ψ3
〉

= ∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)x·z+ f (x)

2n

∣

∣z
〉

[

∣

∣0
〉

−
∣

∣1
〉

√
2

]

The key to the Deutsch-Jozsa algorithm is the following rather subtle point. We measure the probability
amplitude ofz =

∣

∣0
〉⊗n, the all zero state. (If the qubits are spins in a magnetic field, this would be the

ground state - correct?) Consider the instance whenf (x) is constant. Sincez =
∣

∣0
〉⊗n, x · z must also be

equal to zero and hence(−1)x·z+ f (x) is either−1 or+1 for all values of x, where−1 holds for f (x) = 1 and
1 holds for f (x) = 0. In this case the amplitude forz =

∣

∣0
〉⊗n is

± ∑
x∈{0,1}n

1
2n = ±1

C/CS/Phys 191, Fall 2005, Lecture 17 5



which exhausts the probability amplitude forψ3. In other words, sinceψ3 is normalized to 1 and the
amplitude ofz =

∣

∣0
〉⊗n already gives probability 1, there can be no other componentin ψ3 - all other

amplitudes must be zero. Hence when you measure the firstn qubits in the query register, you will obtain a
zero (or more correctly, 0⊗n).

Conversely, iff (x) is balanced then(−1)x·z+ f (x) will be +1 for some values ofx and−1 for other values of
x. This is where the balanced requirement comes into play. Since all possible x’ values are considered and
the function is perfectly balanced, one must have equal numbers of+1 and−1. The amplitude of the all
zero statez =

∣

∣0
〉⊗n is then:

∑
x1

+1
2n +∑

x2

−1
2n = 0

wherex1 is the set of x’s such thatf (x) is equal to 0 andx2 is the set of x’s wheref (x) is equal to 1. Hence
you will not measure the all zero eigenvalue 0⊗n when f (x) is balanced since the probability amplitudes
interfere destructively to produce a net probability amplitude of zero for the all zero state.

What will be measured if the function is balanced? Anything except the all zero eigenvalue. At least one
qubit will result in a measurement value of 1.

Note that this algorithm does require only one query off (x), i.e., ofU f , but it requires the ability to make
ann-qubit measurement.

C/CS/Phys 191, Fall 2005, Lecture 17 6


	Readings
	Deutsch's algorithm
	Deutsch-Josza algorithm

