CS 188: Artificial Intelligence

Bayes’ Nets

Instructors: Sergey Levine --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Reminders

- A probability model specifies a probability for every possible world
 - Typically, possible worlds are defined by assignments to a set of variables X_1, \ldots, X_n
 - In that case, the probability model is a joint distribution $P(X_1, \ldots, X_n)$
 - Written as a table, this would be exponential in n
- Independence: joint distribution = product of marginal distributions
 - $P(x, y) = P(x)P(y)$ or $P(x) = P(x \mid y)$
 - E.g., probability model for n coins represented by n numbers instead of 2^n
- Independence is rare in practice: within a domain, most variables correlated
- Conditional independence is much more common:
 - Toothache and Catch are conditionally independent given Cavity
 - Traffic and Umbrella are conditionally independent given Rain
 - Alarm and Fire are conditionally independent given Smoke
 - Reading1 and Reading2 are conditionally independent given Ghost location
What about two readings? What is \(P(r_1, r_2 \mid g) \)?

Readings are conditionally independent given the ghost location!

\[
P(r_1, r_2 \mid g) = P(r_1 \mid g) P(r_2 \mid g)
\]

Applying Bayes’ rule in full:

\[
P(g \mid r_1, r_2) \propto P(r_1, r_2 \mid g) P(g) = P(g) P(r_1 \mid g) P(r_2 \mid g)
\]

Bayesian updating using low-dimensional conditional distributions!!
Bayes Nets: Big Picture
Bayes Nets: Big Picture

- **Bayes nets**: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - A subset of the general class of graphical models
- **Take advantage of local causality**:
 - the world is composed of many variables,
 - each interacting locally with a few others
- For about 10 min, we’ll be vague about how these interactions are specified
Graphical Model Notation

- **Nodes:** variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- **Arcs:** interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

- For now: imagine that arrows mean direct causation (in general, they don’t!)
Example: Coin Flips

- N independent coin flips

\[X_1 \quad X_2 \quad \ldots \quad X_n \]

- No interactions between variables: absolute independence
Example: Traffic

- **Variables:**
 - T: There is traffic
 - U: I’m holding my umbrella
 - R: It rains
Example: Smoke alarm

- **Variables:**
 - F: There is fire
 - S: There is smoke
 - A: Alarm sounds
Example: Ghostbusters
Example Bayes’ Net: Insurance
Example Bayes’ Net: Car
Can we build it?

- **Variables**
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity
Can we build it?

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Bayes Net Syntax and Semantics
Bayes Net Syntax

- A set of nodes, one per variable X_i
- A directed, acyclic graph
- A conditional distribution for each node given its parent variables in the graph

 - **CPT**: conditional probability table: each row is a distribution for child given a configuration of its parents
 - Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Example: Alarm Network

Number of free parameters in each CPT:

Parent domain sizes d_1, \ldots, d_k

Child domain size d

Each table row must sum to 1

$$(d-1) \prod_i d_i$$
Suppose
- \(n \) variables
- Maximum domain size is \(d \)
- Maximum number of parents is \(k \)

Full joint distribution has size \(O(d^n) \)

Bayes net has size \(O(n \cdot d^k) \)
- Linear scaling with \(n \) as long as causal structure is local
Bayes nets encode joint distributions as product of conditional distributions on each variable:

\[P(X_1, \ldots, X_n) = \prod_i P(X_i \mid \text{Parents}(X_i)) \]
Example

\[
P(b, \neg e, a, \neg j, \neg m) = P(b) \cdot P(\neg e) \cdot P(a|b, \neg e) \cdot P(\neg j|a) \cdot P(\neg m|a)
\]
\[
= 0.001 \cdot 0.998 \cdot 0.94 \cdot 0.1 \cdot 0.3 = 0.00028
\]
Probabilities in BNs

- Why are we guaranteed that setting
 \[P(X_1, \ldots, X_n) = \prod_i P(X_i | \text{Parents}(X_i)) \]
 results in a proper joint distribution?

- Chain rule (valid for all distributions):
 \[P(X_1, \ldots, X_n) = \prod_i P(X_i | X_1, \ldots, X_{i-1}) \]

- Assume conditional independences:
 \[P(X_i | X_1, \ldots, X_{i-1}) = P(X_i | \text{Parents}(X_i)) \]
 When adding node \(X_i \), ensure parents “shield” it from other predecessors

□ Consequence: \[P(X_1, \ldots, X_n) = \prod_i P(X_i | \text{Parents}(X_i)) \]

- So the topology implies that certain conditional independencies hold
Example: Burglary

- Burglary
- Earthquake
- Alarm

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P(B)</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>0.001</td>
<td>0.999</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P(A</td>
<td>B,E)</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>0.95</td>
<td>0.05</td>
</tr>
<tr>
<td>true</td>
<td>0.94</td>
<td>0.06</td>
</tr>
<tr>
<td>false</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>false</td>
<td>0.001</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P(E)</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>0.002</td>
<td>0.998</td>
<td></td>
</tr>
</tbody>
</table>
Example: Burglary

- Alarm
- Burglary
- Earthquake

| A | P(B|A) | P(E|A,B) |
|-----|-------|---------|
| true| | |
| false| | |

| A | B | P(E|A,B) |
|-----|-----|---------|
| true| true| |
| true| false| |
| false| true| |
| false| false| |
Causality?

- When Bayes nets reflect the true causal patterns:
 - Often simpler (fewer parents, fewer parameters)
 - Often easier to assess probabilities
 - Often more robust: e.g., changes in frequency of burglaries should not affect the rest of the model!

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables Traffic and Umbrella
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence:
 \[P(X_i \mid X_1, \ldots, X_{i-1}) = P(X_i \mid Parents(X_i)) \]
Conditional independence semantics

- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics \iff global semantics
Example

- JohnCalls independent of Burglary given Alarm?
 - Yes
- JohnCalls independent of MaryCalls given Alarm?
 - Yes
- Burglary independent of Earthquake?
 - Yes
- Burglary independent of Earthquake given Alarm?
 - NO!
 - Given that the alarm has sounded, both burglary and earthquake become more likely
 - But if we then learn that a burglary has happened, the alarm is *explained away* and the probability of earthquake drops back
Markov blanket

- A variable’s Markov blanket consists of parents, children, children’s other parents
- *Every variable is conditionally independent of all other variables given its Markov blanket*
So far: how a Bayes net encodes a joint distribution

Next: how to answer queries, i.e., compute conditional probabilities of queries given evidence