Announcements

- **Homework 2**
 - Due 2/11 (today) at 11:59pm
 - Electronic HW2
 - Written HW2

- **Project 2**
 - Releases today
 - Due 2/22 at 4:00pm

- **Mini-contest 1 (optional)**
 - Due 2/11 (today) at 11:59pm
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards
Recap: MDPs

- **Markov decision processes:**
 - States \(S \)
 - Actions \(A \)
 - Transitions \(P(s'|s,a) \) (or \(T(s,a,s') \))
 - Rewards \(R(s,a,s') \) (and discount \(\gamma \))
 - Start state \(s_0 \)

- **Quantities:**
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

\[
\begin{array}{cccc}
\text{Cool} & \text{Fast} & \text{Slow} & \text{Cool} \\
0.5 & 1.0 & 0.5 & 0.5 \\
\text{Warm} & \text{Fast} & \text{Slow} & \text{Warm} \\
0.5 & 1.0 & 0.5 & 0.5 \\
\text{Overheated} & \text{Fast} & \text{Slow} & \text{Overheated} \\
-10 & 1.0 & -10 & -10 \\
\end{array}
\]
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - \(U([1,2,3]) = 1 \cdot 1 + 0.5 \cdot 2 + 0.25 \cdot 3 \)
 - \(U([1,2,3]) < U([3,2,1]) \)
The value (utility) of a state s:
$V^*(s) = \text{expected utility starting in } s \text{ and acting optimally}$

The value (utility) of a q-state (s,a):
$Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally}$

The optimal policy:
$\pi^*(s) = \text{optimal action from state } s$
Solving MDPs
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0
Racing Search Tree
Racing Search Tree
We’re doing way too much work with expectimax!

Problem: States are repeated
- Idea: Only compute needed quantities once

Problem: Tree goes on forever
- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Key idea: time-limited values

Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps

- Equivalently, it’s what a depth-k expectimax would give from s
k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=4

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=5

VALUES AFTER 5 ITERATIONS

0.51 0.72 0.84 1.00
0.27 0.55 -1.00
0.00 0.22 0.37 0.13

Noise = 0.2
Discount = 0.9
Living reward = 0
k=6

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 7$

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=8

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k = 12 \)

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values

\[V_4(\text{vehicle}) \quad V_4(\text{vehicle}) \quad V_4(\text{vehicle}) \]

\[V_3(\text{vehicle}) \quad V_3(\text{vehicle}) \quad V_3(\text{vehicle}) \]

\[V_2(\text{vehicle}) \quad V_2(\text{vehicle}) \quad V_2(\text{vehicle}) \]

\[V_1(\text{vehicle}) \quad V_1(\text{vehicle}) \quad V_1(\text{vehicle}) \]

\[V_0(\text{vehicle}) \quad V_0(\text{vehicle}) \quad V_0(\text{vehicle}) \]
Value Iteration
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one step of expectimax from each state:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]
- Repeat until convergence
- Complexity of each iteration: $O(S^2A)$
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Value Iteration

\[
\begin{align*}
V_2 & \begin{bmatrix} 3.5 & 2.5 & 0 \end{bmatrix} \\
V_1 & \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \\
V_0 & \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}
\end{align*}
\]

Assume no discount!

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]
Convergence*

- How do we know the V_k vectors are going to converge?

- **Case 1:** If the tree has maximum depth M, then V_M holds the actual untruncated values

- **Case 2:** If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge
How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
The Bellman Equations

- Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values.

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over.
Value Iteration

- Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Value iteration is just a fixed point solution method
 - … though the \(V_k \) vectors are also interpretable as time-limited values
Policy Methods
Policy Evaluation
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state
 - ... though the tree’s value would depend on which policy we fixed
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

- Define the utility of a state s, under a fixed policy π:
 \[V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi \]

- Recursive relation (one-step look-ahead / Bellman equation):
 \[
 V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]
 \]
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

- How do we calculate the V’s for a fixed policy π?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^\pi(s) = 0$$

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Efficiency: $O(S^2)$ per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Challenge question: how else can we solve this?
Policy Extraction
Let’s imagine we have the optimal values $V^*(s)$

How should we act?
 - It’s not obvious!

We need to do a mini-expectimax (one step)

$$
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
$$

This is called **policy extraction**, since it gets the policy implied by the values.
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

\[
\pi^*(s) = \arg\max_a Q^*(s, a)
\]

- Important lesson: actions are easier to select from q-values than values!
Policy Iteration
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A)\) per iteration
- Problem 2: The “max” at each state rarely changes
- Problem 3: The policy often converges long before the values
k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 2

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 2 ITERATIONS
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=4

VALUES AFTER 4 ITERATIONS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.66</td>
<td>0.83</td>
<td>1.00</td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td>0.51</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.31</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Noise = 0.2
Discount = 0.9
Living reward = 0
k=5

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 7

VALUES AFTER 7 ITERATIONS

0.62 0.74 0.85 1.00

0.50 0.57 -1.00

0.34 0.36 0.45 0.24

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 8 ITERATIONS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.53</td>
<td>0.57</td>
<td></td>
<td>-1.00</td>
</tr>
<tr>
<td>0.42</td>
<td>0.39</td>
<td>0.46</td>
<td>0.26</td>
</tr>
</tbody>
</table>

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=9$

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 11 ITERATIONS

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

- Alternative approach for optimal values:
 - **Step 1: Policy evaluation:** calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement:** update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Iteration

- **Evaluation:** For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:

 \[V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right] \]

- **Improvement:** For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

 \[\pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right] \]
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs
Summary: MDP Algorithms

- So you want to…
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
Next Time: Reinforcement Learning!