Self-assessment due: Tuesday 7/23/2019 at 11:59pm (submit via Gradescope)
Q1. MDPs: Dice Bonanza

A casino is considering adding a new game to their collection, but need to analyze it before releasing it on their floor. They have hired you to execute the analysis. On each round of the game, the player has the option of rolling a fair 6-sided die. That is, the die lands on values 1 through 6 with equal probability. Each roll costs 1 dollar, and the player must roll the very first round. Each time the player rolls the die, the player has two possible actions:

1. Stop: Stop playing by collecting the dollar value that the die lands on, or
2. Roll: Roll again, paying another 1 dollar.

Having taken CS 188, you decide to model this problem using an infinite horizon Markov Decision Process (MDP). The player initially starts in state Start, where the player only has one possible action: Roll. State s_i denotes the state where the die lands on i. Once a player decides to Stop, the game is over, transitioning the player to the End state.

(a) In solving this problem, you consider using policy iteration. Your initial policy π is in the table below. Evaluate the policy at each state, with $\gamma = 1$.

<table>
<thead>
<tr>
<th>State</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi(s)$</td>
<td>Roll</td>
<td>Roll</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
</tr>
<tr>
<td>$V^\pi(s)$</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

We have that $s_i = i$ for $i \in \{3, 4, 5, 6\}$, since the player will be awarded no further rewards according to the policy. From the Bellman equations, we have that $V(s_1) = -1 + \frac{1}{6}(V(s_1) + V(s_2) + 3 + 4 + 5 + 6)$ and that $V(s_2) = -1 + \frac{1}{6}(V(s_1) + V(s_2) + 3 + 4 + 5 + 6)$. Solving this linear system yields $V(s_1) = V(s_2) = 3$.

(b) Having determined the values, perform a policy update to find the new policy π'. The table below shows the old policy π and has filled in parts of the updated policy π' for you. If both Roll and Stop are viable new actions for a state, write down both Roll/Stop. In this part as well, we have $\gamma = 1$.

<table>
<thead>
<tr>
<th>State</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi(s)$</td>
<td>Roll</td>
<td>Roll</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
</tr>
<tr>
<td>$\pi'(s)$</td>
<td>Roll</td>
<td>Roll</td>
<td>Roll/Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
</tr>
</tbody>
</table>

For each s_i in part (a), we compare the values obtained via Rolling and Stopping. The value of Rolling for each state s_i is $-1 + \frac{1}{6}(3 + 3 + 3 + 4 + 5 + 6) = 3$. The value of Stopping for each state s_i is i. At each state s_i, we take the action that yields the largest value; so, for s_1 and s_2, we Roll, and for s_4 and s_5, we stop. For s_3, we Roll/Stop, since the values from Rolling and Stopping are equal.

(c) Is $\pi(s)$ from part (a) optimal? Explain why or why not.

Yes, the old policy is optimal. Looking at part (b), there is a tie between 2 equally good policies that policy iteration considers employing. One of these policies is the same as the old policy. This means that both new policies are as equally good as the old policy, and policy iteration has converged. Since policy iteration converges to the optimal policy, we can be sure that $\pi(s)$ from part (a) is optimal.
(d) Suppose that we were now working with some $\gamma \in [0,1)$ and wanted to run value iteration. Select the one statement that would hold true at convergence, or write the correct answer next to Other if none of the options are correct.

- $V^*(s_i) = \max\left\{-1 + \frac{i}{6}, \sum_j \gamma V^*(s_j)\right\}$
- $V^*(s_i) = \frac{1}{6} \max\left\{-1 + \frac{i}{6}, \sum_k V^*(s_j)\right\}$
- $V^*(s_i) = \sum_j \max\left\{-1 + \frac{i}{6}, \gamma V^*(s_j)\right\}$
- $V^*(s_i) = \sum_j \max\left\{i, -1 + \gamma V^*(s_j)\right\}$
- $V^*(s_i) = \frac{i}{6} \max\left\{-1 + \gamma V^*(s_j)\right\}$
- $V^*(s_i) = \sum_j \max\left\{i, -1 + \frac{2}{6} \sum V^*(s_j)\right\}$
- $V^*(s_i) = \sum_j \max\left\{i, -\frac{1}{6} + \gamma V^*(s_j)\right\}$

- $V^*(s_i) = \frac{1}{6} \sum_j \max\left\{i, -1 + \gamma V^*(s_j)\right\}$
- $V^*(s_i) = \sum_j \max\left\{\frac{i}{6}, -1 + \gamma V^*(s_j)\right\}$

○ Other ________

At convergence,

$$V^*(s_i) = \max_a Q^*(s_i, a)$$

$$= \max \{Q^*(s_i, \text{stop}), Q^*(s_i, \text{roll})\}$$

$$= \max \left\{R(s_i, \text{stop}), R(s_i, \text{roll}) + \gamma \sum_j T(s_i, \text{roll}, s_j)V^*(s_j)\right\}$$

$$= \max \left\{i, -1 + \frac{\gamma}{6} \sum_j V^*(s_j)\right\}$$
Q2. Bellman Equations for the Post-Decision State

Consider an infinite-horizon, discounted MDP \((S, A, T, R, \gamma)\). Suppose that the transition probabilities and the reward function have the following form:

\[
T(s, a, s') = P(s'|f(s, a)), \quad R(s, a, s') = R(s, a)
\]

Here, \(f\) is some deterministic function mapping \(S \times A \rightarrow Y\), where \(Y\) is a set of states called post-decision states. We will use the letter \(y\) to denote an element of \(Y\), i.e., a post-decision state. In words, the state transitions consist of two steps: a deterministic step that depends on the action, and a stochastic step that does not depend on the action. The sequence of states \((s_t)\), actions \((a_t)\), post-decision-states \((y_t)\), and rewards \((r_t)\) is illustrated below.

\[
(s_0, a_0) \xrightarrow{f} y_0 \xrightarrow{P} (s_1, a_1) \xrightarrow{f} y_1 \xrightarrow{P} (s_2, a_2) \xrightarrow{f} \ldots
\]

\[
\begin{array}{c}
\vdots \\
r_0 \\
\vdots \\
r_1 \\
\vdots \\
r_2 \\
\end{array}
\]

You have learned about \(V^\pi(s)\), which is the expected discounted sum of rewards, starting from state \(s\), when acting according to policy \(\pi\).

\[
V^\pi(s_0) = E \left[R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \right] \quad \text{given} \ a_t = \pi(s_t) \text{ for } t = 0, 1, 2, \ldots
\]

\(V^\ast(s)\) is the value function of the optimal policy, \(V^\ast(s) = \max_\pi V^\pi(s)\).

This question will explore the concept of computing value functions on the post-decision-states \(y\). \(^1\)

\[
W^\pi(y_0) = E \left[R(s_1, a_1) + \gamma R(s_2, a_2) + \gamma^2 R(s_3, a_3) + \ldots \right]
\]

We define \(W^\ast(y) = \max_\pi W^\pi(y)\).

\(^1\)In some applications, it is easier to learn an approximate \(W\) function than \(V\) or \(Q\). For example, to use reinforcement learning to play Tetris, a natural approach is to learn the value of the block pile after you’ve placed your block, rather than the value of the pair (current block, block pile). TD-Gammon, a computer program developed in the early 90s, was trained by reinforcement learning to play backgammon as well as the top human experts. TD-Gammon learned an approximate \(W\) function.
(a) Write W^* in terms of V^*.

$W^*(y) =$

- $\sum_{s'} P(s' \mid y) V^*(s')$
- $\sum_{s'} P(s' \mid y) [V^*(s') + \max_a R(s', a)]$
- $\sum_{s'} P(s' \mid y) [V^*(s') + \gamma \max_a R(s', a)]$
- $\sum_{s'} P(s' \mid y) [\gamma V^*(s') + \max_a R(s', a)]$
- None of the above

Consider the expected rewards under the optimal policy.

$W^*(\mathbf{y}_0) = E [R(s_1, a_1) + \gamma R(s_2, a_2) + \gamma^2 R(s_3, a_3) + \ldots \mid y_0]$

$= \sum_{s_1} P(s_1 \mid y_0) E [R(s_1, a_1) + \gamma R(s_2, a_2) + \gamma^2 R(s_3, a_3) + \ldots \mid s_1]$

$= \sum_{s_1} P(s_1 \mid y_0) V^*(s_1)$

V^* is time-independent, so we can replace y_0 by y and replace s_1 by s', giving

$W^*(y) = \sum_{s'} P(s' \mid y) V^*(s')$

(b) Write V^* in terms of W^*.

$V^*(s) =$

- $\max_a [W^*(f(s, a))]$
- $\max_a [R(s, a) + W^*(f(s, a))]$
- $\max_a [R(s, a) + \gamma W^*(f(s, a))]$
- $\max_a [\gamma R(s, a) + W^*(f(s, a))]$
- None of the above

$V^*(s_0) = \max_{a_0} Q(s_0, a_0)$

$= \max_{a_0} E [R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \mid s_0, a_0]$

$= \max_{a_0} \left(E[R(s_0, a_0) \mid s_0, a_0] + E[R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \mid s_0, a_0] \right)$

$= \max_{a_0} \left(R(s_0, a_0) + E[\gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \mid f(x_0, a_0)] \right)$

$= \max_{a_0} (R(s_0, a_0) + \gamma W^*(f(s_0, a_0)))$

Renaming variables, we get

$V^*(s) = \max_a (R(s, a) + \gamma W^*(f(s, a)))$
(c) Recall that the optimal value function V^* satisfies the Bellman equation:

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') (R(s, a) + \gamma V^*(s')),$$

which can also be used as an update equation to compute V^*.

Provide the equivalent of the Bellman equation for W^*.

$$W^*(y) = \sum_{s'} P(s'|y) \max_a (R(s', a) + \gamma W^*(f(s', a)))$$

The answer follows from combining parts (a) and (b)

(d) Fill in the blanks to give a policy iteration algorithm, which is guaranteed return the optimal policy π^*.

- Initialize policy $\pi^{(1)}$ arbitrarily.
- For $i = 1, 2, 3, \ldots$
 - Compute $W^{\pi(i)}(y)$ for all $y \in Y$.
 - Compute a new policy $\pi^{(i+1)}$, where $\pi^{(i+1)}(s) = \arg \max_a$ (1) for all $s \in S$.
 - If (2) for all $s \in S$, return $\pi^{(i)}$.

Fill in your answers for blanks (1) and (2) below.

(1)
- $W^{\pi(i)}(f(s, a))$
- $R(s, a) + W^{\pi(i)}(f(s, a))$
- $\bullet R(s, a) + \gamma W^{\pi(i)}(f(s, a))$
- $\gamma R(s, a) + W^{\pi(i)}(f(s, a))$
- None of the above

(2)
$\pi^{(i)}(s) = \pi^{(i+1)}(s)$

Policy iteration performs the following update:

$$\pi^{(i+1)}(s) = \arg \max_a Q^{\pi(i)}(s, a)$$

Next we express Q^π in terms of W^π (similarly to part b):

$$Q^\pi(s_0, a_0) = E \left[R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \mid s_0, a_0 \right]$$

$$= R(s_0, a_0) + \gamma E \left[R(s_1, a_1) + \gamma R(s_2, a_2) + \ldots \mid f(s_0, a_0) \right]$$

$$= R(s_0, a_0) + \gamma W^\pi(f(s_0, a_0))$$
Q3. Q-learning

Consider the following gridworld (rewards shown on left, state names shown on right).

From state A, the possible actions are right(\rightarrow) and down(\downarrow). From state B, the possible actions are left(\leftarrow) and down(\downarrow). For a numbered state (G1, G2), the only action is to exit. Upon exiting from a numbered square we collect the reward specified by the number on the square and enter the end-of-game absorbing state X. We also know that the discount factor $\gamma = 1$, and in this MDP all actions are deterministic and always succeed.

Consider the following episodes:

- **Episode 1 (E_1)**
 - s: A, a: \downarrow, s': G1, r: 0
 - G1 exit, X: 10

- **Episode 2 (E_2)**
 - s: B, a: \downarrow, s': G2, r: 0
 - G2 exit, X: 1

- **Episode 3 (E_3)**
 - s: A, a: \rightarrow, s': B, r: 0
 - B exit, A: 0

- **Episode 4 (E_4)**
 - s: B, a: \leftarrow, s': A, r: 0
 - A exit, G1: 0

(a) Consider using temporal-difference learning to learn $V(s)$. When running TD-learning, all values are initialized to zero.

For which sequences of episodes, if repeated infinitely often, does $V(s)$ converge to $V^*(s)$ for all states s?

(Write appropriate learning rates such that all values converge.)

Write the correct sequence under “Other” if no correct sequences of episodes are listed.

- E_1, E_2, E_3, E_4
- E_4, E_3, E_2, E_1
- E_4, E_3, E_2, E_1
- E_1, E_2, E_3, E_1
- E_1, E_2, E_3, E_4
- E_1, E_2, E_4, E_1
- E_1, E_2, E_4, E_4

- **Other** See explanation below

TD learning learns the value of the executed policy, which is $V^\pi(s)$. Therefore for $V^\pi(s)$ to converge to $V^*(s)$, it is necessary that the executing policy $\pi(s) = \pi^*(s)$.

Because there is no discounting since $\gamma = 1$, the optimal deterministic policy is $\pi^*(A) = \downarrow$ and $\pi^*(B) = \leftarrow$ ($\pi^*(G1)$ and $\pi^*(G2)$ are trivially exit because that is the only available action). Therefore episodes $E1$ and $E4$ act according to $\pi^*(s)$ while episodes $E2$ and $E3$ are sampled from a suboptimal policy.

From the above, TD learning using episode $E4$ (and optionally $E1$) will converge to $V^\pi(s) = V^*(s)$ for states A, B, $G1$. However, then we never visit $G2$, so $V(G2)$ will never converge. If we add either episode $E2$ or $E3$ to ensure that $V(G2)$ converges, then we are executing a suboptimal policy, which will then cause $V(B)$ to not converge. Therefore none of the listed sequences will learn a value function $V^\pi(s)$ that converges to $V^*(s)$ for all states s. An example of a correct sequence would be $E2$, $E4$, $E4$, $E4$, ...; sampling $E2$ first with the learning rate $\alpha = 1$ ensures $V^\pi(G2) = V^*(G2)$, and then executing $E4$ infinitely after ensures the values for states A, B, and $G1$ converge to the optimal values.
We also accepted the answer such that the value function $V(s)$ converges to $V^*(s)$ for states A and B (ignoring G_1 and G_2). TD learning using only episode E_4 (and optionally E_1) will converge to $V^*(s) = V^*(s)$ for states A and B, therefore the only correct listed option is E_4, E_4, E_4, E_4.

(b) Consider using Q-learning to learn $Q(s,a)$. When running Q-learning, all values are initialized to zero. For which sequences of episodes, if repeated infinitely often, does $Q(s,a)$ converge to $Q^*(s,a)$ for all state-action pairs (s,a)

(Assume appropriate learning rates such that all Q-values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

- E_1, E_2, E_3, E_4
- E_4, E_3, E_2, E_1
- E_1, E_2, E_1, E_2
- E_1, E_2, E_3, E_1
- E_3, E_4, E_3, E_4
- E_4, E_4, E_4, E_4
- E_1, E_2, E_4, E_1

- Other ________

For $Q(s,a)$ to converge, we must visit all state action pairs for non-zero $Q^*(s,a)$ infinitely often. Therefore we must take the exit action in states G_1 and G_2, must take the down and right action in state A, and must take the left and down action in state B. Therefore the answers must include E_3 and E_4.

8
Q4. Reinforcement Learning

Imagine an unknown game which has only two states \{A, B\} and in each state the agent has two actions to choose from: \{Up, Down\}. Suppose a game agent chooses actions according to some policy \(\pi\) and generates the following sequence of actions and rewards in the unknown game:

<table>
<thead>
<tr>
<th>(t)</th>
<th>(s_t)</th>
<th>(a_t)</th>
<th>(s_{t+1})</th>
<th>(r_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>Down</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>Down</td>
<td>B</td>
<td>-4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Up</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>Up</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Up</td>
<td>A</td>
<td>-1</td>
</tr>
</tbody>
</table>

Unless specified otherwise, assume a discount factor \(\gamma = 0.5\) and a learning rate \(\alpha = 0.5\).

(a) Recall the update function of Q-learning is:

\[
Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a'))
\]

Assume that all Q-values initialized as 0. What are the following Q-values learned by running Q-learning with the above experience sequence?

\[
Q(A, \text{Down}) = 1, \quad Q(B, \text{Up}) = \frac{7}{4}
\]

Perform Q-learning update 4 times, once for each of the first 4 observations.

(b) In model-based reinforcement learning, we first estimate the transition function \(T(s, a, s')\) and the reward function \(R(s, a, s')\). Fill in the following estimates of \(T\) and \(R\), estimated from the experience above. Write “n/a” if not applicable or undefined.

\[
\hat{T}(A, \text{Up}, A) = 1, \quad \hat{T}(A, \text{Up}, B) = 0, \quad \hat{T}(B, \text{Up}, A) = \frac{1}{2}, \quad \hat{T}(B, \text{Up}, B) = \frac{1}{2}
\]

\[
\hat{R}(A, \text{Up}, A) = -1, \quad \hat{R}(A, \text{Up}, B) = \text{n/a}, \quad \hat{R}(B, \text{Up}, A) = 3, \quad \hat{R}(B, \text{Up}, B) = 0
\]

Count transitions above and calculate frequencies. Rewards are observed rewards.

(c) To decouple this question from the previous one, assume we had a different experience and ended up with the following estimates of the transition and reward functions:

<table>
<thead>
<tr>
<th>(s)</th>
<th>(a)</th>
<th>(s')</th>
<th>(T(s, a, s'))</th>
<th>(R(s, a, s'))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Up</td>
<td>A</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>Down</td>
<td>A</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>Down</td>
<td>B</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>Up</td>
<td>A</td>
<td>1</td>
<td>-5</td>
</tr>
<tr>
<td>B</td>
<td>Down</td>
<td>B</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

(i) Give the optimal policy \(\hat{\pi}^*(s)\) and \(\hat{V}^*(s)\) for the MDP with transition function \(\hat{T}\) and reward function \(\hat{R}\). Hint: for any \(x \in \mathbb{R}, \ |x| < 1, \ we \ have \ 1 + x + x^2 + x^3 + x^4 + \cdots = 1/(1-x)\).

\[
\hat{\pi}^*(A) = \text{Up}, \quad \hat{\pi}^*(B) = \text{Down}, \quad \hat{V}^*(A) = 20, \quad \hat{V}^*(B) = 16
\]

Find the optimal policy first, and then use optimal policy to calculate the value function using a Bellman equation.

(ii) If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values will it converge to? Assume the learning rate \(\alpha_t\) is properly chosen so that convergence is guaranteed.

- the values found above, \(\hat{V}^*\)
The Q-learning algorithm will not converge to the optimal values V^* for the MDP because the experience sequence and transition frequencies replayed are not necessarily representative of the underlying MDP. (For example, the true $T(A, \text{Down}, A)$ might be equal to 0.75, in which case, repeatedly feeding in the above experience would not provide an accurate sampling of the MDP.) However, for the MDP with transition function \hat{T} and reward function \hat{R}, replaying this experience repeatedly will result in Q-learning converging to its optimal values \hat{V}^*.
Q5. Policy Evaluation

In this question, you will be working in an MDP with states \(S \), actions \(A \), discount factor \(\gamma \), transition function \(T \), and reward function \(R \).

We have some fixed policy \(\pi : S \rightarrow A \), which returns an action \(a = \pi(s) \) for each state \(s \in S \). We want to learn the \(Q \) function \(Q^\pi(s, a) \) for this policy: the expected discounted reward from taking action \(a \) in state \(s \) and then continuing to act according to \(\pi \). \(Q^\pi(s, a) = \sum_s T(s, a, s') [R(s, a, s') + \gamma Q^\pi(s', \pi(s'))] \). The policy \(\pi \) will not change while running any of the algorithms below.

(a) Can we guarantee anything about how the values \(Q^\pi \) compare to the values \(Q^* \) for an optimal policy \(\pi^* \)?

- \(Q^\pi(s, a) \leq Q^*(s, a) \) for all \(s, a \)
- \(Q^\pi(s, a) = Q^*(s, a) \) for all \(s, a \)
- \(Q^\pi(s, a) \geq Q^*(s, a) \) for all \(s, a \)
- None of the above are guaranteed

(b) Suppose \(T \) and \(R \) are unknown. You will develop sample-based methods to estimate \(Q^\pi \). You obtain a series of samples \((s_1, a_1, r_1), (s_2, a_2, r_2), \ldots, (s_T, a_T, r_T)\) from acting according to this policy (where \(a_t = \pi(s_t) \), for all \(t \)).

(i) Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

\[
V(s_t) \leftarrow (1 - \alpha)V(s_t) + \alpha(r_t + \gamma V(s_{t+1}))
\]

which approximates the expected discounted reward \(V^\pi(s) \) for following policy \(\pi \) from each state \(s \), for a learning rate \(\alpha \).

Fill in the blank below to create a similar update equation which will approximate \(Q^\pi \) using the samples. You can use any of the terms \(Q, s_t, s_{t+1}, a_t, a_{t+1}, r_t, r_{t+1}, \gamma, \alpha, \pi \) in your equation, as well as \(\sum \) and \(\max \) with any index variables (i.e. you could write \(\max_a \), or \(\sum_a \) and then use \(a \) somewhere else), but no other terms.

\[
Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha [r_t + \gamma Q(s_{t+1}, a_{t+1})]
\]

(ii) Now, we will approximate \(Q^\pi \) using a linear function: \(Q(s, a) = \sum_{i=1}^d w_i f_i(s, a) \) for weights \(w_1, \ldots, w_d \) and feature functions \(f_1(s, a), \ldots, f_d(s, a) \).

To decouple this part from the previous part, use \(Q_{samp} \) for the value in the blank in part (i) (i.e. \(Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha Q_{samp} \)).

Which of the following is the correct sample-based update for each \(w_i \)?

- \(w_i \leftarrow w_i + \alpha(Q_{samp} - Q(s_t, a_t)) \)
- \(w_i \leftarrow w_i - \alpha(Q(s_t, a_t) - Q_{samp}) \)
- \(w_i \leftarrow w_i + \alpha(Q(s_t, a_t) - Q_{samp}) f_i(s_t, a_t) \)
- \(w_i \leftarrow w_i + \alpha(Q(s_t, a_t) - Q_{samp}) f_i(s_t, a_t) \)
- \(w_i \leftarrow w_i + \alpha(Q(s_t, a_t) - Q_{samp}) w_i \)
- \(w_i \leftarrow w_i - \alpha(Q(s_t, a_t) - Q_{samp}) w_i \)

(iii) The algorithms in the previous parts (part i and ii) are:

- ■ model-free
- □ model-based
Q6. Proofs: Admissibility, Consistency and Graph Search

Here, we will revisit and prove some of the properties of search mentioned in lectures in a more rigorous manner.

The central idea of consistency is that we enforce not only that a heuristic underestimates the total distance to a goal from any given node, but also the cost/weight of each edge in the graph. For graph search to be optimal, we have to make sure that every time we visit a node, it is already the most optimal way to reach that node, since we don’t get another chance to expand it with our closed list in place. Hence, it is intuitive to see that, consistent heuristic, a function that underestimates distance of every intermediate ”goal” just like how an admissible heuristic underestimates total distance to a goal, is likely to be sufficient for graph search to be optimal when run with A* search. We will prove that for a given search problem, if the consistency constraint is satisfied by a heuristic function \(h \), using A* graph search with \(h \) on that search problem will yield an optimal solution.

(a) Show that consistency implies admissibility.

Admissibility: \(\forall n, 0 \leq h(n) \leq h^*(n) \)

Consistency : \(\forall A,C \quad h(A) - h(C) \leq \text{cost}(A,C) \)

\[\Rightarrow \quad \forall A,C \quad h(A) \leq \text{cost}(A,C) + h(C) \]

Let \(v \) be an arbitrary node in the graph and \(h(.) \) be any consistent heuristic.

If there is no path from \(v \) to the goal node, admissibility is already trivially satisfied as \(h^*(v) \) is infinite.

If there is some path from \(v \) to a goal state \(G \), consider the shortest path \((v,v_1,v_2,...,v_n,G) \).

First consider \(h(v_n) \). Since \(h \) is consistent, \(h(v_n) \leq \text{cost}(v_n,G) + h(G) = \text{cost}(v_n,G) \) by admissibility of \(h \).

Similarly, \(h(v_{n-1}) \leq \text{cost}(v_{n-1},v_n) + h(v_n) \leq \text{cost}(v_{n-1},v_n) + \text{cost}(v_n,G) \).

Inducting on \(n \), we can see that \(h(v_k) \leq \text{cost}(v_k,v_{k+1}) + \ldots + \text{cost}(v_{n-1},v_n) + \text{cost}(v_n,G) \) for any \(k \) between 1 and \(n-1 \).

Since \((v,v_1,v_2,...,v_n,G) \) is the shortest path, we can see that \(h(v_k) \leq \text{cost}(v_k,v_{k+1}) + \ldots + \text{cost}(v_{n-1},v_n) + \text{cost}(v_n,G) = h^*(v_k) \).

(b) Construct a graph and a heuristic such that running A* tree search finds an optimal path while running A* graph search finds a suboptimal one.

In the above example, it’s clear that the optimal route is to follow \(S \rightarrow A \rightarrow C \rightarrow G \), yielding a total path cost of \(1+1+3=5 \). The only other path to the goal, \(S \rightarrow B \rightarrow C \rightarrow G \) has a path cost of \(1+2+3=6 \). However, because the heuristic value of node \(A \) is so much larger than the heuristic value of node \(B \), node \(C \) is first expanded along the second, suboptimal path as a child of node \(B \). It’s then placed into the ”closed” set, and so A* graph search fails to reexpand it when it visits it as a child of \(A \), so it never finds the optimal solution.

Hence, to maintain completeness and optimality under A* graph search, we need an even stronger property than admissibility, consistency. The central idea of consistency is that we enforce not only that a heuristic underestimates the total distance to a goal from any given node, but also the cost/weight of each edge in the graph. The cost of an edge as measured by the heuristic function is simply the difference in heuristic values for two connected nodes. Mathematically, the consistency constraint can be expressed as follows:

\[\forall A,C \quad h(A) - h(C) \leq \text{cost}(A,C) \]
(c) Recall the following notations:
- \(g(n) \) - The function representing total backwards cost computed by UCS.
- \(h(n) \) - The heuristic value function, or estimated forward cost, used by greedy search.
- \(f(n) \) - The function representing estimated total cost, used by A* search. \(f(n) = g(n) + h(n) \).

Show that the \(f \) value constructed with a consistent heuristic never decreases along a path. Specifically, consider a path \(p = (s_1, s_2, ..., s_{i-1}, s_i) \), show that \(f(s_{i+1}) \geq f(s_i) \). Also, check that this is indeed the case with your example in (b). Hint: use the definition of consistent heuristic!

Want to show: \(f(s_{i+1}) \geq f(s_i) \)
\[
\begin{align*}
 f(s_{i+1}) &= h(s_{i+1}) + g(s_{i+1}) = h(s_i) + g(s_i) + \text{cost}(s_i, s_{i+1}) \\
 &\geq h(s_{i+1}) + g(s_i) + h(s_i) - h(s_{i+1}) = f(s_i)
\end{align*}
\]
Where we used def. of consistency to obtain: \(\text{cost}(s_i, s_{i+1}) \geq h(s_i) - h(s_{i+1}) \)

(d) Consider a scenario where some \(n \) on path to \(G^* \) isn’t in queue when we need it, because some worse \(n' \) for the same state was dequeued and expanded first. Take the highest such \(n \) in tree and let \(p \) be the ancestor of \(n \) that was on the queue when \(n' \) was popped. Prove that \(p \) would have been expanded before \(n' \) and this scenario would never happen with a consistent heuristic.

\[
\begin{align*}
 f(n) &\geq f(p) \\
 f(n) &= g(n) + h(n) \\
 f(n') &= g(n') + h(n') \\
 g(n') &> g(n) \\
 f(n') &> f(n) \geq f(p) \\
 f(n') &\geq f(p) \\
 \implies p \text{ will be expanded before } n'.
\end{align*}
\]

(e) Finally, show that an optimal goal \(G^* \) will always be removed for expansion and returned before any suboptimal goal \(G \) with a consistent heuristic.

Since \(h(G) = h(G^*) = 0 \),
\[
\begin{align*}
 f(G^*) &= g(G^*) < g(G) = f(G).
\end{align*}
\]