Q1. Logistic Regression

We would like to classify some data. We have N samples, where each sample consists of a feature vector $\mathbf{x} = \{x_1, \cdots, x_k\}$ and a label $y = \{0, 1\}$.

We introduce a new type of classifier called logistic regression, which produces predictions as follows:

$$P(Y = 1|X) = h(\mathbf{x}) = s \left(\sum_i w_i x_i \right) = \frac{1}{1 + \exp(-\sum_i w_i x_i)}$$

$$s(\gamma) = \frac{1}{1 + \exp(-\gamma)}$$

where $s(\gamma)$ is the logistic function, $\exp x = e^x$, and $w = \{w_1, \cdots, w_k\}$ are the learned weights.

Let’s find the weights w_j for logistic regression using stochastic gradient descent. We would like to minimize the following loss function for each sample:

$$L = -[y \ln h(\mathbf{x}) + (1 - y) \ln(1 - h(\mathbf{x}))]$$

(a) Find dL/dw_i. Hint: $s'(\gamma) = s(\gamma)(1 - s(\gamma))$.

(b) Write the stochastic gradient descent update for w_i. Our step size is η.

2 Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here \(x \) is a single real-valued input feature with an associated class \(y^* \) (0 or 1). There are two weight parameters \(w_1 \) and \(w_2 \), and non-linearity functions \(g_1 \) and \(g_2 \) (to be defined later, below). The network will output a value \(a_2 \) between 0 and 1, representing the probability of being in class 1. We will be using a loss function \(\text{Loss} \) (to be defined later, below), to compare the prediction \(a_2 \) with the true class \(y^* \).

1. Perform the forward pass on this network, writing the output values for each node \(z_1, a_1, z_2 \) and \(a_2 \) in terms of the node’s input values:

2. Compute the loss \(\text{Loss}(a_2, y^*) \) in terms of the input \(x \), weights \(w_i \), and activation functions \(g_i \):

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive \(\frac{\partial \text{Loss}}{\partial w_2} \). Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)
4. Suppose the loss function is quadratic, \(\text{Loss}(a_2, y^*) = \frac{1}{2}(a_2 - y^*)^2 \), and \(g_1 \) and \(g_2 \) are both sigmoid functions \(g(z) = \frac{1}{1 + e^{-z}} \) (note: it’s typically better to use a different type of loss, cross-entropy, for classification problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that \(\frac{\partial g(z)}{\partial z} = g(z)(1 - g(z)) \) for the sigmoid function, write \(\frac{\partial \text{Loss}}{\partial w_2} \) in terms of the values from the forward pass, \(y^* \), \(a_1 \), and \(a_2 \):

5. Now use the chain rule to derive \(\frac{\partial \text{Loss}}{\partial w_1} \) as a product of partial derivatives at each node used in the chain rule:

6. Finally, write \(\frac{\partial \text{Loss}}{\partial w_1} \) in terms of \(x, y^*, w_i, a_i, z_i \):

7. What is the gradient descent update for \(w_1 \) with step-size \(\alpha \) in terms of the values computed above?
Q3. Gradient Ascent Trajectory

(a) Which of the following paths is a feasible trajectory for the gradient ascent algorithm?
Q4. Neural Networks Representation

(a) We are given the following 5 neural networks (NN) architectures. The operation \ast represents the matrix multiplication operation, $[w_{11} \ldots w_{ik}]$ and $[b_{i1} \ldots b_{ik}]$ represents the weights and the biases of the NN, the orientation (vertical and horizontal) is just for consistency in the operations. The term $[ReLU]$ in B means applying a ReLU activation to the first element of the vector and a sigmoid (σ) activation to the second element. These operations are depicted in the following figures:

Which of the following neural networks can represent each function?

Which of the following neural networks can represent each function?
(i) $f_1(x)$:

- A
- B
- C
- D
- E
- F

(ii) $f_{II}(x)$:

- A
- B
- C
- D
- E
- F

(iii) $f_{III}(x)$:

- A
- B
- C
- D
- E
- F

(iv) $f_{IV}(x)$:

- A
- B
- C
- D
- E
- F