Q1. Pacman with Feature-Based Q-Learning

We would like to use a Q-learning agent for Pacman, but the size of the state space for a large grid is too massive to hold in memory. To solve this, we will switch to feature-based representation of Pacman’s state.

(a) We will have two features, \(F_g \) and \(F_p \), defined as follows:

\[
\begin{align*}
F_g(s, a) &= A(s) + B(s, a) + C(s, a) \\
F_p(s, a) &= D(s) + 2E(s, a)
\end{align*}
\]

where

\[
\begin{align*}
A(s) &= \text{number of ghosts within 1 step of state } s \\
B(s, a) &= \text{number of ghosts Pacman touches after taking action } a \text{ from state } s \\
C(s, a) &= \text{number of ghosts within 1 step of the state Pacman ends up in after taking action } a \\
D(s) &= \text{number of food pellets within 1 step of state } s \\
E(s, a) &= \text{number of food pellets eaten after taking action } a \text{ from state } s
\end{align*}
\]

For this pacman board, the ghosts will always be stationary, and the action space is \{left, right, up, down, stay\}.

(b) After a few episodes of Q-learning, the weights are \(w_g = -10 \) and \(w_p = 100 \). Calculate the Q value for each action \(\in \{left, right, up, stay\} \) from the current state shown in the figure.
(c) We observe a transition that starts from the state above, s, takes action up, ends in state s' (the state with the food pellet above) and receives a reward $R(s, a, s') = 250$. The available actions from state s' are $down$ and $stay$. Assuming a discount of $\gamma = 0.5$, calculate the new estimate of the Q value for s based on this episode.

(d) With this new estimate and a learning rate (α) of 0.5, update the weights for each feature.

2 Feature-Based Q-Learning

1. When using features to represent the Q-function is it guaranteed that the feature-based Q-learning finds the same optimal Q^* as would be found when using a tabular representation for the Q-function?
Q3. MDPs and RL

Recall that in approximate Q-learning, the Q-value is a weighted sum of features: $Q(s, a) = \sum_i w_i f_i(s, a)$. To derive a weight update equation, we first defined the loss function $L_2 = \frac{1}{2}(y - \sum_k w_k f_k(x))^2$ and found $dL_2/dw_m = -(y - \sum_k w_k f_k(x)) f_m(x)$. Our label y in this setup is $r + \gamma \max_a Q(s', a')$. Putting this all together, we derived the gradient descent update rule for w_m as $w_m \leftarrow w_m + \alpha (r + \gamma \max_a Q(s', a') - Q(s, a)) f_m(s, a)$.

In the following question, you will derive the gradient descent update rule for w_m using a different loss function:

$$L_1 = \left| y - \sum_k w_k f_k(x) \right|$$

(a) Find dL_1/dw_m. Ignore the non-differentiable point.

(b) Write the gradient descent update rule for w_m, using the L_1 loss function.
4 Probability

Use the probability table to calculate the following values:

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>$P(X_1, X_2, X_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

1. $P(X_1 = 1, X_2 = 0)$

2. $P(X_3 = 0)$

3. $P(X_2 = 1 | X_3 = 1)$

4. $P(X_1 = 0 | X_2 = 1, X_3 = 1)$

5. $P(X_1 = 0, X_2 = 1 | X_3 = 1)$