Bayes’ Nets

- Representation ✓
- Conditional Independences ✓

Probabilistic Inference (Next).
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Probabilistic inference is NP-complete
- Sampling (approximate)

Learning Bayes’ Nets from Data
Examples:

- Posterior probability
- Most likely explanation:

Inference

Inference: calculating some useful quantity from a joint probability distribution
Inference by Enumeration

General case:
- Evidence variables: $E_1, \ldots, E_k = e_1, \ldots, e_k$
- Query* variable: Q
- Hidden variables: H_1, \ldots, H_r

All Variables: Evidence $\cup \{Q\} \cup$ Hidden.

We want: $Pr(Q|e_1, \ldots, e_k)$

* Works fine with multiple query variables, too

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1, \ldots, e_k) = \sum_{h_1, \ldots, h_r} P(Q, h_1, \ldots, h_r, e_1, \ldots, e_k)$$

Step 3: Normalize.

$$Z = \sum_q P(Q = q, e_1, \ldots, e_k)$$

$$P(Q|e_1, \ldots, e_k) = \frac{1}{Z} P(Q, e_1, \ldots, e_k)$$
Inference by Enumeration in Bayes’ Net

Given unlimited time, inference in BNs is easy.

\[P(B| +j, +m) \propto P(B, +j, +m) \]

\[= \sum_{e,a} P(B, e, a, +j, +m) \]

\[= \sum_{e,a} P(B)P(e)P(a|B, e)P(+j|a)P(+m|a) \]

\[= P(B)P(+e)P(+a|B, +e)P(+j| +a)P(+m| +a) \]

\[+ P(B)P(+e)P(−a|B, +e)P(+j| −a)P(+m| −a) +
 P(B)P(−e)P(+a|B, −e)P(+j| +a)P(+m| +a) \]

\[+ P(B)P(−e)P(−a|B, −e)P(+j| −a) \]
Inference by Enumeration?

\[P(\text{antilock}|\text{observed variables}) = ? \]
Factor Zoo
Joint distribution: $P(X,Y)$
- Entries $P(x,y)$ for all x, y
- Sums to? 1

Selected joint: $P(x,Y)$
- Slice of joint distribution
- Entries $P(x,y)$: fixed x, all y
- Table $P(cold, W)$?
- Sums to? $P(x)$.

Number of capital letters (variables)= dimensionality of the table
Factor Zoo II

Single conditional: $P(Y|x)$
- Entries $P(y|x)$ for fixed x, all y
- Sum of entries? 1

Family of conditionals:
$P(X|Y)$
- Multiple conditionals
- Entries $P(x|y)$ for all x, y
- Sum? $|Y|$

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.8</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Factor Zoo III

Specified family: $P(y|X)$
- Entries $P(y|x)$ for fixed y, but for all x
- Sums to? who knows!

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>rain</td>
<td>hot</td>
<td>0.2</td>
</tr>
<tr>
<td>rain</td>
<td>cold</td>
<td>0.6</td>
</tr>
</tbody>
</table>
In general, when we write $P(Y_1, \ldots, Y_N | X_1, \ldots, X_M)$

- It is a “factor”: a multi-dimensional array
- Its entries are $P(y_1, \ldots, y_N | x_1, \ldots, x_M)$
- Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array
Example: Traffic Domain

Random Variables

- R: Raining
- T: Traffic
- L: Late for class!

\[
P(R)
\begin{array}{|c|c|}
\hline
T & L \\
\hline
+r & 0.1 \\
-r & 0.9 \\
\hline
\end{array}
\]

\[
P(T|R)
\begin{array}{|c|c|c|}
\hline
+r & +t & 0.8 \\
+r & -t & 0.2 \\
-r & +t & 0.1 \\
-r & -t & 0.9 \\
\hline
\end{array}
\]

\[
P(L|T)
\begin{array}{|c|c|c|}
\hline
+t & +l & 0.3 \\
+t & -l & 0.7 \\
-t & +l & 0.1 \\
-t & -l & 0.9 \\
\hline
\end{array}
\]
Inference by Enumeration: Procedural Outline

Track objects called factors.

Initial factors are local CPTs (one per node)

\[
P(R) \quad P(T|R) \quad P(L|T)
\]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>L</th>
<th>+r</th>
<th>+t</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>+l</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>-l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>+l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>-l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any known values are selected.

E.g. if we know \(L = +l\), the initial factors are

\[
P(R) \quad P(T|R) \quad P(L|T)
\]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>L</th>
<th>+r</th>
<th>+t</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>+l</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>-l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>+l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>-l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procedure: Join all factors, then eliminate all hidden variables
Operation 1: Join Factors

First basic operation: joining factors

Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables involved

Example: Join on R

\[
P(R) \quad \times \quad P(T|R) \quad \rightarrow \quad P(R, T)
\]

\[
\begin{array}{c|c|c}
R & P(R) & T, L \\
\hline
+R & 0.1 \\
-R & 0.9 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
P(T|R) & +R & -R \\
\hline
+T & 0.8 & 0.2 \\
-T & 0.1 & 0.9 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c|c}
P(R, T) & +R & -R & +T & -T \\
\hline
+R & 0.08 & 0.02 \\
-R & 0.09 & 0.81 \\
\end{array}
\]

Computation for each entry: pointwise products
Example: Multiple Joins
Example: Multiple Joins

\[
P(R) = \begin{array}{cc}
T & L \\
+r & 0.1 \\
-r & 0.9
\end{array}
\]

\[
P(T|R) = \begin{array}{ccc}
+r & +t & 0.8 \\
+r & -t & 0.2 \\
-r & +t & 0.1 \\
-r & -t & 0.9
\end{array}
\]

\[
P(T|R) = \begin{array}{ccc}
+r & +t & 0.08 \\
+r & -t & 0.02 \\
-r & +t & 0.09 \\
-r & -t & 0.81
\end{array}
\]

\[
P(L|T) = \begin{array}{ccc}
+t & +l & 0.3 \\
+t & -l & 0.7 \\
-t & +l & 0.1 \\
-t & -l & 0.9
\end{array}
\]

\[
P(R, T) = \begin{array}{ccc}
+r & +t & 0.08 \\
+r & -t & 0.02 \\
-r & +t & 0.09 \\
-r & -t & 0.81
\end{array}
\]

\[
P(L|T) = \begin{array}{ccc}
+t & +l & 0.024 \\
+r & +t & -l & 0.056 \\
+r & -t & +l & 0.002 \\
+r & -t & -l & 0.018 \\
-r & +t & +l & 0.027 \\
-r & +t & -l & 0.063 \\
-r & -t & +l & 0.081 \\
-r & -t & -l & 0.729
\end{array}
\]
Operation 2: Eliminate

Second basic operation: marginalization

Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation

Example:

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+t</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+r</td>
<td>-t</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>+t</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>-t</td>
<td>0.81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum R

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiple Elimination

\[P(R, T, L) \]

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>+l</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+t</td>
<td>+l</td>
<td>0.024</td>
</tr>
<tr>
<td>+r</td>
<td>+t</td>
<td>-l</td>
<td>0.056</td>
</tr>
<tr>
<td>+r</td>
<td>-t</td>
<td>+l</td>
<td>0.002</td>
</tr>
<tr>
<td>+r</td>
<td>-t</td>
<td>-l</td>
<td>0.018</td>
</tr>
<tr>
<td>-r</td>
<td>+t</td>
<td>+l</td>
<td>0.027</td>
</tr>
<tr>
<td>-r</td>
<td>+t</td>
<td>-l</td>
<td>0.063</td>
</tr>
<tr>
<td>-r</td>
<td>-t</td>
<td>+l</td>
<td>0.081</td>
</tr>
<tr>
<td>-r</td>
<td>-t</td>
<td>-l</td>
<td>0.729</td>
</tr>
</tbody>
</table>

Sum out R → T, L

\[+t \quad +l \quad 0.026 \\
+\quad -l \quad 0.119 \\
-t \quad +l \quad 0.083 \\
-t \quad -l \quad 0.747 \\
\]

Sum out T → L

<table>
<thead>
<tr>
<th></th>
<th>+l</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+l</td>
<td>0.134</td>
<td></td>
</tr>
<tr>
<td>-l</td>
<td>0.866</td>
<td></td>
</tr>
</tbody>
</table>
Thus Far: Multiple Join, Multiple Eliminate

Inference by Enumeration!
Example: Traffic Domain (revisited)

Random Variables
- R: Raining
- T: Traffic
- L: Late for class!

\[
P(R) = \begin{array}{c|c}
+\text{r} & 0.1 \\
-\text{r} & 0.9 \\
\end{array}
\]

\[
P(T|R) = \begin{array}{c|c|c}
+\text{r} & +\text{t} & 0.8 \\
+\text{r} & -\text{t} & 0.2 \\
-\text{r} & +\text{t} & 0.1 \\
-\text{r} & -\text{t} & 0.9 \\
\end{array}
\]

\[
P(L|T) = \begin{array}{c|c|c}
+\text{t} & +\text{l} & 0.3 \\
+\text{t} & -\text{l} & 0.7 \\
-\text{t} & +\text{l} & 0.1 \\
-\text{t} & -\text{l} & 0.9 \\
\end{array}
\]

\[
P(L) = \sum_{r,t} P(r, t, L) = \sum_{r,t} P(r)P(t|r)P(L|t).
\]

or \(P(L) = \sum_{t} P(t)P(L|t) \) and \(P(T) = \sum_{r} P(r)P(T|R) \).
Inference by Enumeration vs. Variable Elimination

Why is inference by enumeration so slow?
- Join whole joint distribution before sum out the hidden variables

Idea: interleave joining and marginalizing!
- Called “Variable Elimination”
- Still NP-hard, but usually much faster than inference by enumeration
Marginalizing Early (= Variable Elimination)
Traffic Domain

Inference by Enumeration:

\[P(L) = \sum_t \sum_r P(r) P(t|r) P(L|t). \]

Join on r: \(P(r) P(t|r) \)
Join on t: \(\times P(L|t) \)
Eliminate r: \(\sum_r \)
Eliminate t: \(\sum_t \)

Variable Elimination:

\[P(L) = \sum_t P(L|t) \sum_r P(r) P(t|r). \]

Join on r: \(P(r) P(t|r) \)
Eliminate r: \(\sum_r \)
Join on t: \(\times P(L|t) \)
Eliminate t: \(\sum_t \)
Marginalizing Early! (aka VE)

\[P(R) \]

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

\[P(T|R) \]

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>+l</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>+l</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>-l</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

\[P(T) \]

Join R

\[P(R, T) \]

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>+l</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>+r</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>0.81</td>
<td></td>
</tr>
</tbody>
</table>

\[P(L|T) \]

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>+l</th>
<th>+l</th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum out R

\[P(T) \]

Join T

\[P(T, L) \]

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>+l</th>
<th>+l</th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>0.051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>0.119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>0.083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>0.747</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum out T
Evidence

Start with factors that select evidence

- Initial factors:

 \[
 P(R) \quad P(T|R) \quad P(L|T)
 \]

 \[
 \begin{array}{c|c|c}
 \hline
 T & L & +r & +t & 0.8 \\
 +r & 0.1 & +r & -t & 0.2 \\
 -r & +t & 0.1 \\
 -r & -t & 0.9 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c}
 \hline
 +t & +l & 0.3 \\
 +t & -l & 0.7 \\
 -t & +l & 0.1 \\
 -t & -l & 0.9 \\
 \hline
 \end{array}
 \]

- Computing \(P(L|+r) \), the initial factors become:

 \[
 P(R) \quad P(T|R)
 \]

 \[
 \begin{array}{c|c|c}
 \hline
 T & L & +r & 0.1 \\
 +r & 0.1 & +r & -t & 0.2 \\
 -r & +t & 0.1 \\
 -r & -t & 0.9 \\
 \hline
 \end{array}
 \]

Then eliminate variables to answer query.
Result will be a selected joint of query and evidence

- E.g. for $P(L \mid + r)$, we would end up with:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$+r$</td>
<td>$+ l$</td>
<td>0.026</td>
</tr>
<tr>
<td>$+r$</td>
<td>$- l$</td>
<td>0.074</td>
</tr>
</tbody>
</table>

To get our answer, just normalize this!

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$+r$</td>
<td>$+ l$</td>
<td>0.26</td>
</tr>
<tr>
<td>$+r$</td>
<td>$- l$</td>
<td>0.74</td>
</tr>
</tbody>
</table>

That’s it!
General Variable Elimination

Query: Q

Start with initial factors:
- Local CPTs (but instantiated by evidence)

While still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H

Join all remaining factors and normalize
Example

\[P(B|j, m) \propto P(B, j, m) \]

Selected CPT:

\[
\begin{align*}
P(B) & \quad P(E) & \quad P(A|B, E) \\
P(j|A) & \quad P(m|A)
\end{align*}
\]

Choose Hidden Variable A.
Factors: \(P(A|B, E), P(j|A), P(m|A) \).
Join: \(P(j, m, A|B, E) \).
Sum: \(P(j, m|B, E) \)

Remaining Factors: \(P(B), P(E), P(j, m|B, E) \)

Choose Hidden Variable E:
Factors: \(P(j, m|B, E), P(E) \).
Join: \(P(j, m, E|B) \).
Sum: \(P(j, m|B) \)

Remaining Factors: \(P(B), P(j, m|B) \)

Finish with B: Factors: \(P(j, m|B, E), P(B) \).
Join: \(P(j, m, B) \).

And Finally....
Normalize: \(P(B|j, m) \)
Factors: $P(B) \ P(E) \ P(A|B,E) \ P(j,A) \ P(m,A)$

Sum out to get marginal.

use Bayes’ net joint distribution expression

use $x^*(y+z) = xy + xz$
joining on a, and then summing out gives $f1$

use $x^*(y+z) = xy + xz$
joining on e, and then summing out gives $f2$

Exploits:

$uwyz + uwz + uxy + uxz + vwy + vwz + vxy + vxz = (u+v)(w+x)(y+z)$.

$P(B|j,m) \propto P(B,j,m)$

$= \sum_{e,a} P(B,j,m,e,a)$

$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j,a)P(m|a)$

$= \sum_{e} P(B)P(e)\sum_{a} P(a|B,e)P(j,a)P(m|a)$

$= \sum_{e} P(B)P(e)f_1(j,m|B,e)$

$= P(B)\sum_{e} P(e)f_1(j,m|B,e)$

$= P(B)f_2(j,m|B)$
Another Variable Elimination Example

Query: $P(X_3|y_1, y_2, y_3)$.

Evidence:
$P(Z), P(X_1|Z), P(X_2|Z), P(X_3|Z),$
$P(y_1|X_1), P(y_2|X_2), P(y_3|X_3)$

Eliminate X_1, get $f_1(y_1|Z) = \sum_{x_1} P(x_1|Z)P(y_1|x_1)$.

$P(Z), P(X_1|Z), P(X_2|Z), P(X_3|Z), P(y_2|X_2), f_1(y_1|Z)$

Eliminate X_2, get $f_2(y_2|Z) = \sum_{x_2} P(x_2|Z)P(y_2|x_2)$.

$P(Z), P(X_1|Z), P(X_3|Z), f_2(y_2|Z), f_1(y_1|Z)$

Eliminate Z, get $f_3(y_1, y_2, X_3) = \sum_z P(z)P(X_3|z)f_1(y_1|z)f_2(y_2|z)$.

$P(y_3|X_3), f_3(y_1, y_2, X_3)$

No more hidden variables. Join.

$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3)$

Normalizing gives result.
Consider the following orderings:

- Query $P(X_n|y_1, \ldots, y_n)$.
- Z, X_1, \ldots, X_{n-1} and X_1, \ldots, X_{n-1}, Z.

What is the size of the maximum factor generated for each of the orderings?

- Eliminate Z? New factor with X_1, \ldots, X_n of size 2^n.

 Uh oh.

- Eliminate X_1? New factor with Z and y_1 of size 2.
- Eliminate X_2? New factor with Z and y_2 of size 2.
- … Cool!

Answer: 2 versus 2^n (assuming binary variables.)

In general: the ordering can greatly affect efficiency.
Computational and space complexity of variable elimination depends on largest factor.

Elimination ordering can greatly affect size of the largest factor.
- E.g., previous slide’s example 2^n vs. 2

Does there always exist an ordering that only results in small factors?
- No!
Worst Case Complexity?

CSP:
\((x_1 \lor x_2 \neg x_3), (\neg x_1 \lor x_3 \lor \neg x_4), (x_2 \lor \neg x_2 \lor x_4), (\neg x_3 \lor \neg x_4 \lor \neg x_3), (x_3 \lor x_5 \lor x_7), (x_4 \lor x_5 \lor x_6), (\neg x_5 \lor x_6 \lor \neg x_7), (\neg x_5 \lor \neg x_6 \lor x_7)\)

If \(P(z) \neq 0\), the 3-SAT problem has a solution!

Inference in Bayes’ nets is NP-hard.

No known efficient probabilistic inference in general.
“Easy” Structures: Polytrees

A polytree is a directed graph with no undirected cycles. For poly-trees you can always find an ordering that is efficient. Try it!!

Cut-set conditioning for Bayes’ net inference:
- Choose set of variables such that if removed only a polytree remains.
- Exercise: Think about how the specifics would work out!
Bayes’ Nets

Representation ✓
D-separation. ✓

Probabilistic Inference. ✓
- E Enumeration (exact, exponential complexity). ✓
- Variable elimination
 (exact, worst-case exponential complexity, often better). ✓
- Inference is NP-complete. ✓
- Sampling (approximate) (Next up.)

Learning Bayes’ Nets from Data. (Later.)