Q1. HMMs: Tracking a Jabberwock

You have been put in charge of a Jabberwock for your friend Lewis. The Jabberwock is kept in a large tugley wood which is conveniently divided into a 10×10 grid. It wanders freely around the 100 possible cells. At each time step $t=1,2,3, \ldots$, the Jabberwock is in some cell $X_{t} \in\{1, \ldots, 10\}^{2}$, and it moves to cell X_{t+1} randomly as follows: with probability 0.5 , it chooses one of the (up to 4) valid neighboring cells uniformly at random; with probability 0.5 , it uses its magical powers to teleport to a random cell uniformly at random among the 100 possibilities (it might teleport to the same cell). It always starts in $X_{1}=(1,1)$.
(a) Compute the probability that the Jabberwock will be in $X_{2}=(2,1)$ at time step 2 . What about $\operatorname{Pr}\left(X_{2}=(4,4)\right)$? $P\left(X_{2}=(2,1)\right)=$
$P\left(X_{2}=(4,4)\right)=$
(b) At each time step t, you dont see X_{t} but see E_{t}, which is the row that the Jabberwock is in; that is, if $X_{t}=(r, c)$, then $E_{t}=r$. You still know that $X_{1}=(1,1)$. Suppose we see that $E_{1}=1, E_{2}=2$ and $E_{3}=10$. Fill in the following table with the distribution over X_{t} after each time step, taking into consideration the evidence. Your answer should be concise. Hint: you should not need to do any heavy calculations.

t	$P\left(X_{t} \mid e_{1: t-1}\right)$	$P\left(X_{t} \mid e_{1: t}\right)$
1		
2		

(c) These images correspond to probability distributions of the Jabberwock's location. Match them with the most appropriate probabilities from this list $P\left(X_{1}\right), P\left(X_{1} \mid e_{1}\right), P\left(X_{2} \mid e_{1}\right), P\left(X_{2} \mid e_{1}, e_{2}\right), P\left(X_{3} \mid e_{1}, e_{2}\right), P\left(X_{3} \mid e_{1}, e_{2}, e_{3}\right)$

Q2. Jabberwock in the wild

Lewis' Jabberwock is in the wild: its position is in a two-dimensional discrete grid, but this time the grid is not bounded. In other words, the position of the Jabberwock is a pair of integers $z=(x, y) \in \mathbb{Z}^{2}=\{\ldots,-2,-1,0,1,2, \ldots\} \times$ $\{\ldots,-2,-1,0,1,2, \ldots\}$.

At each time step $t=1,2,3, \ldots$, the Jabberwock is in some cell $Z_{t}=z \in \mathbb{Z}^{2}$, and it moves to cell Z_{t+1} randomly as follows: with probability $1 / 2$, it stays where it is, otherwise, it chooses one of the four neighboring cells uniformly at random (no teleportation is allowed).
(a) Write the transition probabilities.
(b) Use a particle filter to track the Jabberwock.

As a source of randomness use values in order from the following sequence $\left\{a_{i}\right\}_{1 \leq i \leq 14}$ of numbers generated independently and uniformly at random from $[0,1)$:

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}
0.142	0.522	0.916	0.792	0.703	0.231	0.036	0.859	0.677	0.221	0.156	0.249	0.934	0.679

At each time step t you get an observation of the x coordinate R_{t} in which the Jabberwock sits, but it is a noisy observation. Given that the true position is $Z_{t}=(x, y)$, you observe the correct value $R_{t}=x$ according to the following probability:

$$
P\left(R_{t}=r \mid Z_{t}=(x, y)\right) \propto 0.5^{|x-r|}
$$

To sample transitions from a random number use the following table:

$[0 ; 0.5)$	Stay
$[0.5 ; 0.625)$	Up
$[0.625 ; 0.75)$	Left
$[0.75 ; 0.875)$	Right
$[0.875 ; 1)$	Down

Suppose that you know that half of the time, the Jabberwock starts at $z_{1}=(0,0)$, and the other half, at $z_{1}=(1,1)$. Now, you get the following observations: $R_{1}=1, R_{2}=0, R_{3}=1$. Fill in the following table:
To get you started, since $a_{1} \in[0 ; 0.5)$ and $a_{2} \in[0.5 ; 1)$ the two particles get initialized at $z_{1}=(0,0)$ and $z_{1}=(1,1)$ respectively.

$t=1$	Prior	Weights	Resampling
	$P\left(Z_{1}\right)$	$\propto P\left(R_{1}=1 \mid Z_{1}\right)$	$P\left(Z_{1} \mid R_{1}=1\right)$
Particle 1:	$z_{1}=(0,0)$	$w_{1}=$	$z_{1}=(, \quad)$
Particle 2:	$z_{1}=(1,1)$	$w_{2}=$	$z_{1}=(, \quad)$
Used random samples:	a_{1}, a_{2}		

$t=2$	Transition $P\left(Z_{2} \mid Z_{1}\right)$	Weights $\propto\left(R_{2}=0 \mid Z_{2}\right)$	Resampling $P\left(Z_{2} \mid Z_{1}, R_{2}=0\right)$
Particle 1:	$z_{2}=(\quad, \quad)$	$w_{1}=$	$z_{2}=(, \quad)$
Particle 2:	$z_{2}=(, \quad)$	$w_{2}=$	$z_{2}=(, \quad)$,
Used random samples:			

$t=3$	Transition $P\left(Z_{3} \mid Z_{2}\right)$	$\begin{gathered} \text { Weights } \\ \propto P\left(R_{3}=1 \mid Z_{3}\right) \end{gathered}$	Resampling $P\left(Z_{3} \mid Z_{2}, R_{3}=1\right)$
Particle 1:	$z_{3}=(, \quad)$	$w_{1}=$	$z_{3}=(, \quad)$
Particle 2:	$z_{3}=(, \quad)$	$w_{2}=$	$z_{3}=(, \quad)$
Used random samples:			

(c) Use your samples (the unweighted particles in the last step) to evaluate the posterior probability that the x-coordinate of Z_{3} is different than the column of Z_{3}, i.e. $X_{3} \neq Y_{3}$.
(d) What is the problem of using the elimination algorithm instead of a particle filter for tracking Jabberwock?

