Today

- Naïve Bayes models
 - Smoothing
 - Real world issues

- Perceptrons
 - Mistake-driven learning
 - Data separation, margins, and convergence
General Naïve Bayes

- This is an example of a *naive Bayes* model:

\[
P(C, \text{Effect}_1 \ldots \text{Effect}_n) = P(C) \prod_i P(\text{Effect}_i|C)
\]

- Total number of parameters is *linear* in \(n \)!

Example: Spam Filtering

- Model: \(P(C, W_1 \ldots W_n) = P(C) \prod_i P(W_i|C) \)

- Parameters:

| \(P(C) \) | \(P(W|\text{spam}) \) | \(P(W|\text{ham}) \) |
|---------------------|-------------------------|-------------------------|
| ham: 0.66 | the: 0.016 | the: 0.021 |
| spam: 0.33 | to: 0.015 | to: 0.013 |
| | and: 0.012 | and: 0.011 |
| | ... | ... |
| | free: 0.001 | free: 0.005 |
| | click: 0.001 | click: 0.004 |
| | ... | ... |
| | morally: 0.001 | screens: 0.000 |
| | nicely: 0.001 | minute: 0.000 |
| | ... | ... |
Estimation: Laplace Smoothing

- Laplace’s estimate:
 - Pretend you saw every outcome once more than you actually did

\[
P_{LAP}(x) = \frac{c(x) + 1}{\sum_x [c(x) + 1]}
\]

\[
P_{LAP}(X) = \frac{c(x) + 1}{N + |X|}
\]

- Can derive this as a maximum a posteriori estimate using Dirichlet priors (see cs281a)

Estimation: Laplace Smoothing

- Laplace’s estimate (extended):
 - Pretend you saw every outcome k extra times

\[
P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}
\]

- What’s Laplace with k = 0?
- k is the strength of the prior

- Laplace for conditionals:
 - Smooth each condition independently:

\[
P_{LAP,k}(x|y) = \frac{c(x, y) + k}{c(y) + k|X|}
\]
Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for $P(X|Y)$:
 - When $|X|$ is very large
 - When $|Y|$ is very large

- Another option: linear interpolation
 - Get unconditional $P(X)$ from the data
 - Make sure the estimate of $P(X|Y)$ isn’t too different from $P(X)$

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha) \hat{P}(x)$$

- What if α is 0? 1?

- For even better ways to estimate parameters, as well as details of the math see cs281a, cs294-5

Real NB: Smoothing

- For real classification problems, smoothing is critical
 - ... and usually done badly, even in big commercial systems

- New odds ratios:

| | $P(W|\text{ham})$ | $P(W|\text{spam})$ |
|----------------|-------------------|---------------------|
| $P(W|\text{ham})$ | $P(W|\text{spam})$ |
| helvetica | 11.4 | 28.8 |
| seems | 10.8 | 28.4 |
| group | 10.2 | 27.2 |
| ago | 8.4 | 26.9 |
| areas | 8.3 | 26.5 |
| ... | | |

$Do\ these\ make\ more\ sense?$
Tuning on Held-Out Data

- Now we’ve got two kinds of unknowns
 - Parameters: the probabilities $P(Y|X), P(Y)$
 - Hyper-parameters, like the amount of smoothing to do: k, α

- Where to learn?
 - Learn parameters from training data
 - Must tune hyper-parameters on different data
 - Why?
 - For each value of the hyper-parameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Spam Example

| Word | $P(w|\text{spam})$ | $P(w|\text{ham})$ | Tot Spam | Tot Ham |
|-------|--------------------|-------------------|----------|---------|
| (prior) | 0.33333 | 0.66666 | -1.1 | -0.4 |

$P(\text{spam} | w) = 0.989$
Confidences from a Classifier

- The confidence of a probabilistic classifier:
 - Posterior over the top label
 \[
 \text{confidence}(x) = \arg \max_y P(y|x);
 \]
 - Represents how sure the classifier is of the classification
 - Any probabilistic model will have confidences
 - No guarantee confidence is correct

- Calibration
 - Weak calibration: higher confidences mean higher accuracy
 - Strong calibration: confidence predicts accuracy rate
 - What’s the value of calibration?

Precision vs. Recall

- Let’s say we want to classify web pages as homepages or not
 - In a test set of 1K pages, there are 3 homepages
 - Our classifier says they are all non-homepages
 - 99.7 accuracy!
 - Need new measures for rare positive events

- Precision: fraction of guessed positives which were actually positive
- Recall: fraction of actual positives which were guessed as positive

- Say we guess 5 homepages, of which 2 were actually homepages
 - Precision: 2 correct / 5 guessed = 0.4
 - Recall: 2 correct / 3 true = 0.67

- Which is more important in customer support email automation?
- Which is more important in airport face recognition?
Precision vs. Recall

- **Precision/recall tradeoff**
 - Often, you can trade off precision and recall
 - Only works well with weakly calibrated classifiers

- **To summarize the tradeoff:**
 - **Break-even point:** precision value when \(p = r \)
 - **F-measure:** harmonic mean of \(p \) and \(r \):
 \[
 F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}
 \]

Errors, and What to Do

- **Examples of errors**

 Dear GlobalSCAPE Customer,

 GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99* - the regular list price is $499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

 . . . To receive your $30 Amazon.com promotional certificate, click through to http://www.amazon.com/apparel and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .
What to Do About Errors?

- Need more features—words aren’t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Naïve Bayes models can incorporate a variety of features, but tend to do best in homogeneous cases (e.g. all features are word occurrences)

Features

- A feature is a function which signals a property of the input

- Examples:
 - ALL_CAPS: value is 1 iff email in all caps
 - HAS_URL: value is 1 iff email has a URL
 - NUM_URLS: number of URLs in email
 - VERY_LONG: 1 iff email is longer than 1K
 - SUSPICIOUS_SENDER: 1 iff reply-to domain doesn’t match originating server

- Features are anything you can think of code to evaluate on an input
 - Some cheap, some very very expensive to calculate
 - Can even be the output of another classifier
 - Domain knowledge goes here!

- In naïve Bayes, how did we encode features?
Feature Extractors

- A feature extractor maps inputs to feature vectors
 - Dear Sir.
 First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidencial and top secret, ...
 - W=dear : 1
 W=sir : 1
 W=this : 2
 ...
 W=wish : 0
 ...
 MISSPELLED : 2
 NAMELESS : 1
 ALL_CAPS : 0
 NUM_URLS : 0
 ...

- Many classifiers take feature vectors as inputs
- Feature vectors usually very sparse, use sparse encodings (i.e. only represent non-zero keys)

Generative vs. Discriminative

- Generative classifiers:
 - E.g. naïve Bayes
 - We build a causal model of the variables
 - We then query that model for causes, given evidence

- Discriminative classifiers:
 - E.g. perceptron (next)
 - No causal model, no Bayes rule, often no probabilities
 - Try to predict output directly
 - Loosely: mistake driven rather than model driven
Some (Vague) Biology

- Very loose inspiration: human neurons

The Binary Perceptron

- Inputs are features
- Each feature has a weight
- Sum is the activation

\[\text{activation}_w(x) = \sum_i w_i \cdot f_i(x) \]

- If the activation is:
 - Positive, output 1
 - Negative, output 0
Example: Spam

- Imagine 4 features:
 - Free (number of occurrences of “free”)
 - Money (occurrences of “money”)
 - BIAS (always has value 1)

<table>
<thead>
<tr>
<th>x</th>
<th>(f(x))</th>
<th>(w)</th>
<th>(\sum_i w_i \cdot f_i(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>free : 1</td>
<td>free : 4</td>
<td>(1(-3) +)</td>
<td></td>
</tr>
<tr>
<td>money : 1</td>
<td>money : 2</td>
<td>(1(4) +)</td>
<td></td>
</tr>
<tr>
<td>the : 0</td>
<td>the : 0</td>
<td>(1(2) +)</td>
<td></td>
</tr>
<tr>
<td>BIAS : -3</td>
<td>BIAS : 1</td>
<td>(0(0) +)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(0(0) +)</td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(0(0) +)</td>
<td></td>
</tr>
</tbody>
</table>

\(= 3 \)

Binary Decision Rule

- In the space of feature vectors
 - Any weight vector is a hyperplane
 - One side will be class 1
 - Other will be class 0
The Multiclass Perceptron

- If we have more than two classes:
 - Have a weight vector for each class
 - Calculate an activation for each class

\[
\text{activation}_w(x, c) = \sum_i w_{c,i} \cdot f_i(x)
\]

- Highest activation wins

\[
c = \arg \max_c (\text{activation}_w(x, c))
\]

Example

“win the vote”

<table>
<thead>
<tr>
<th>wSPORTS</th>
<th>wPOLITICS</th>
<th>wTECH</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS : -2</td>
<td>BIAS : 1</td>
<td>BIAS : 2</td>
</tr>
<tr>
<td>win : 4</td>
<td>win : 2</td>
<td>win : 0</td>
</tr>
<tr>
<td>game : 4</td>
<td>game : 0</td>
<td>game : 2</td>
</tr>
<tr>
<td>vote : 0</td>
<td>vote : 4</td>
<td>vote : 0</td>
</tr>
<tr>
<td>the : 0</td>
<td>the : 0</td>
<td>the : 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
The Perceptron Update Rule

- Start with zero weights
- Pick up training instances one by one
- Try to classify
 \[c = \arg \max_c \ w_c \cdot f(x) \]
 \[= \arg \max_c \ \sum_i w_{c,i} \cdot f_i(x) \]
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer
 \[w_c = w_c - f(x) \]
 \[w_{c^*} = w_{c^*} + f(x) \]

Example

“win the vote”
“win the election”
“win the game”

<table>
<thead>
<tr>
<th>wSPORTS</th>
<th>wPOLITICS</th>
<th>wTECH</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS :</td>
<td>BIAS :</td>
<td>BIAS :</td>
</tr>
<tr>
<td>win :</td>
<td>win :</td>
<td>win :</td>
</tr>
<tr>
<td>game :</td>
<td>game :</td>
<td>game :</td>
</tr>
<tr>
<td>vote :</td>
<td>vote :</td>
<td>vote :</td>
</tr>
<tr>
<td>the :</td>
<td>the :</td>
<td>the :</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Mistake-Driven Classification

- In naïve Bayes, parameters:
 - From data statistics
 - Have a causal interpretation
 - One pass through the data

- For the perceptron parameters:
 - From reactions to mistakes
 - Have a discriminative interpretation
 - Go through the data until held-out accuracy maxes out

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability
 \[\text{mistakes} < \frac{1}{\delta^2} \]
Issues with Perceptrons

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining isn’t quite as bad as overfitting, but is similar

- Regularization: if the data isn’t separable, weights might thrash around
 - Averaging weight vectors over time can help (averaged perceptron)

- Mediocre generalization: finds a “barely” separating solution

Summary

- Naïve Bayes
 - Build classifiers using model of training data
 - Smoothing estimates is important in real systems
 - Classifier confidences are useful, when you can get them

- Perceptrons:
 - Make less assumptions about data
 - Mistake-driven learning
 - Multiple passes through data