CS 188: Artificial Intelligence

Bayes Nets: Independence

Instructor: Anca Dragan --- University of California, Berkeley

(Lecturer: Lawrence Chan)

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Probability Recap

- Conditional probability
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- Product rule
 \[P(x, y) = P(x|y)P(y) \]

- Chain rule
 \[P(X_1, X_2, \ldots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- X, Y independent if and only if:
 \[\forall x, y : P(x, y) = P(x)P(y) \]

- X and Y are conditionally independent given Z if and only if:
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \] \(X \perp Y \mid Z \)
A Bayes net is an efficient encoding of a probabilistic model of a domain

Questions we can ask:

- Inference: given a fixed BN, what is $P(X \mid e)$?
- Representation: given a BN graph, what kinds of distributions can it encode?
- Modeling: what BN is most appropriate for a given domain?
Bayes Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values

\[
P(X|a_1 \ldots a_n)
\]

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

\[
P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i))
\]
Example: Alarm Network

\[
P(+b, -e, +a, -j, +m) =
\]
Example: Alarm Network

\[
P(+b, -e, +a, -j, +m) = \]
\[
P(+b)P(-e)P(+a| +b, -e)P(-j| +a)P(+m| +a) = \]
\[
0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7
\]
Size of a Bayes Net

- How big is a joint distribution over N Boolean variables?
 \[2^N \]

- How big is an N-node net if nodes have up to k parents?
 \[O(N \times 2^{k+1}) \]

- Both give you the power to calculate
 \[P(X_1, X_2, \ldots, X_n) \]

- BNs: Huge space savings!

- Also easier to elicit local CPTs

- Also faster to answer queries (last lecture!)
Bayes Nets

- Representation
- Probabilistic Inference
 - Conditional Independence
 - Sampling
 - Learning Bayes’ Nets from Data
X and Y are independent if

\[\forall x, y \quad P(x, y) = P(x)P(y) \implies X \perp Y \]

X and Y are conditionally independent given Z

\[\forall x, y, z \quad P(x, y|z) = P(x|z)P(y|z) \implies X \perp Y|Z \]

(Conditional) independence is a property of a distribution

Example: \(\text{Alarm} \perp \text{Fire}|\text{Smoke} \)
Assumptions we are required to make to define the Bayes net when given the graph:

\[P(x_i | x_1 \cdots x_{i-1}) = P(x_i | \text{parents}(X_i)) \]

Beyond above “chain rule → Bayes net” conditional independence assumptions

- Often additional conditional independences
- They can be read off the graph

Important for modeling: understand assumptions made when choosing a Bayes net graph
Example

- Conditional independence assumptions directly from simplifications in chain rule:
 \[
 R(x \perp y, z \| y, w) = P(x) P(y \| x) P(z \| x, y) P(w \| x, y, z)
 \]
 \[
 W(x \perp y \{z, y\} \| z, P(x) P(y \| x) P(z \| y) P(w \| z)
 \]

- Additional implied conditional independence assumptions?
 \[
 W \perp X \| Y
 \]
Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

![Diagram](X \rightarrow Y \rightarrow Z)

Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they *could* be independent: how?
D-separation: Outline
D-separation: Outline

- Study independence properties for triples
 - Why triples?

- Analyze complex cases in terms of member triples

- D-separation: a condition / algorithm for answering such queries
This configuration is a “causal chain”

Guaranteed X independent of Z?

No!

One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

Example:

Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic

In numbers:

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

\[P(+y \mid +x) = 1, \ P(-y \mid -x) = 1, \]
\[P(+z \mid +y) = 1, \ P(-z \mid -y) = 1 \]
Causal Chains

- This configuration is a “causal chain”

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

- Guaranteed X independent of Z given Y?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y) \]

Yes!

- Evidence along the chain “blocks” the influence
Common Causes

- This configuration is a “common cause”

Y: Project due

X: Forums busy

Z: Lab full

Guaranteed X independent of Z?

No!

- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

Example:

- Project due causes both forums busy and lab full

In numbers:

\[P(+x | +y) = 1, \ P(-x | -y) = 1, \ P(+z | +y) = 1, \ P(-z | -y) = 1 \]
This configuration is a “common cause”

\[P(x, y, z) = P(y)P(x|y)P(z|y) \]

Guaranteed X and Z independent given Y?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)} = P(z|y) \]

Yes!

Observing the cause blocks influence between effects.
Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated

- Proof:

\[
P(x, y) = \sum_z P(x, y, z) \\
= \sum_z P(x)P(y)P(z|x, y) \\
= P(x)P(y)\sum_z P(z|x, y) \\
= P(x)P(y)
\]
Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - (Proved previously)

- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.

- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.
The General Case
The General Case

- General question: in a given BN, are two variables independent (given evidence)?

- Solution: analyze the graph

- Any complex example can be broken into repetitions of the three canonical cases
Recipe: shade evidence nodes, look for paths in the resulting graph

Attempt 1: if two nodes are **not** connected by any undirected path not blocked by a shaded node, they are conditionally independent

Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn’t count as a link in a path unless “active”
Question: Are X and Y conditionally independent given evidence variables \(\{Z\} \)?
- Yes, if X and Y “d-separated” by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!

A path is active if each triple is active:
- Causal chain \(A \to B \to C \) where B is unobserved (either direction)
- Common cause \(A \leftarrow B \to C \) where B is unobserved
- Common effect (aka v-structure)
 \(A \to B \leftarrow C \) where B or one of its descendants is observed

All it takes to block a path is a single inactive segment
D-Separation

- Query: \[X_i \perp\!
\perp X_j \mid \{ X_{k_1}, \ldots, X_{k_n} \} \, ? \]

- Check all (undirected!) paths between \(X_i \) and \(X_j \)
 - If one or more active, then independence not guaranteed
 \[X_i \not\perp\!
\perp X_j \mid \{ X_{k_1}, \ldots, X_{k_n} \} \]
 - Otherwise (i.e. if all paths are inactive), then independence is guaranteed
 \[X_i \perp\!
\perp X_j \mid \{ X_{k_1}, \ldots, X_{k_n} \} \]
Example

\[R \perp B \]
\[R \perp B \mid T \]
\[R \perp B \mid T' \]
Example

$L \perp T'|T$\hspace{1cm}Yes

$L \perp B$\hspace{1cm}Yes

$L \perp B|T$

$L \perp B|T'$

$L \perp B|T, R$\hspace{1cm}Yes
Example

- **Variables:**
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- **Questions:**

\[
T \perp D
\]

\[
T \perp D | R \quad \text{Yes}
\]

\[
T \perp D | R, S
\]
Structure Implications

- Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp \perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \]

- This list determines the set of probability distributions that can be represented
Computing All Independences

Compute ALL THE INDEPENDENCES!
Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence.)
- Adding arcs increases the set of distributions, but has several costs.
- Full conditioning can encode any distribution.
Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions (by making use of conditional independences!)

- Guaranteed independencies of distributions can be deduced from BN graph structure

- D-separation gives precise conditional independence guarantees from graph alone

- A Bayes net’s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution
Bayes Nets

- Representation

- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete

- Conditional Independences
 - Sampling
 - Learning from data