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Reinforcement Learning

� Reinforcement learning:

� Still have an MDP:

� A set of states s ∈ S

� A set of actions (per state) A

� A model T(s,a,s’)

� A reward function R(s,a,s’)

� Still looking for a policy π(s)

� New twist: don’t know T or R

� I.e. don’t know which states are good or what the actions do

� Must actually try actions and states out to learn

[DEMO]

Example: Animal Learning

� RL studied experimentally for more than 60 

years in psychology

� Rewards: food, pain, hunger, drugs, etc.

� Mechanisms and sophistication debated

� Example: foraging

� Bees learn near-optimal foraging plan in field of 

artificial flowers with controlled nectar supplies

� Bees have a direct neural connection from nectar 

intake measurement to motor planning area

Example: Backgammon

� Reward only for win / loss in 
terminal states, zero 
otherwise

� TD-Gammon learns a 
function approximation to 
V(s) using a neural network

� Combined with depth 3 
search, one of the top 3 
players in the world

� You could imagine training 
Pacman this way…

� … but it’s tricky!

Passive Learning

� Simplified task
� You don’t know the transitions T(s,a,s’)

� You don’t know the rewards R(s,a,s’)

� You are given a policy π(s)

� Goal: learn the state values (and maybe the model)

� In this case:
� No choice about what actions to take

� Just execute the policy and learn from experience

� We’ll get to the general case soon

Example: Direct Estimation

� Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

U(1,1) ~ (92 + -106) / 2 = -7

U(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1

+100

-100
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Model-Based Learning

� Idea:
� Learn the model empirically (rather than values)

� Solve the MDP as if the learned model were correct

� Empirical model learning
� Simplest case:

� Count outcomes for each s,a

� Normalize to give estimate of T(s,a,s’)

� Discover R(s,a,s’) the first time we experience (s,a,s’)

� More complex learners are possible (e.g. if we know 
that all squares have related action outcomes, e.g. 
“stationary noise”)

Example: Model-Based Learning

� Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100 

(done)

Model-Based Learning

� In general, want to learn the optimal policy, not 

evaluate a fixed policy

� Idea: adaptive dynamic programming

� Learn an initial model of the environment:

� Solve for the optimal policy for this model (value or 

policy iteration)

� Refine model through experience and repeat

� Crucial: we have to make sure we actually learn 

about all of the model

Example: Greedy ADP

� Imagine we find the lower 

path to the good exit first

� Some states will never be 

visited following this policy 

from (1,1)

� We’ll keep re-using this 

policy because following it 

never collects the regions 

of the model we need to 

learn the optimal policy 

? ?

What Went Wrong?

� Problem with following optimal 
policy for current model:
� Never learn about better regions 

of the space if current policy 
neglects them

� Fundamental tradeoff: 
exploration vs. exploitation
� Exploration: must take actions 

with suboptimal estimates to 
discover new rewards and 
increase eventual utility

� Exploitation: once the true 
optimal policy is learned, 
exploration reduces utility

� Systems must explore in the 
beginning and exploit in the limit

? ?

Model-Free Learning

� Big idea: why bother learning T?

� Update V each time we experience a transition

� Frequent outcomes will contribute more updates 

(over time)

� Temporal difference learning (TD)

� Policy still fixed!

� Move values toward value of whatever 

successor occurs

a

s

s, a

s,a,s’

s’
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Example: Passive TD

Take γ = 1, α = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

Problems with TD Value Learning

� TD value leaning is model-free for 

policy evaluation

� However, if we want to turn our value 

estimates into a policy, we’re sunk:

� Idea: learn Q-values directly

� Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

Q-Learning

� Learn Q*(s,a) values

� Receive a sample (s,a,s’,r)

� Consider your old estimate:

� Consider your new sample estimate:

� Nudge the old estimate towards the new sample:

Q-Learning Example

� [DEMO]

Q-Learning Properties

� Will converge to optimal policy

� If you explore enough

� If you make the learning rate small enough

� Neat property: does not learn policies which are 

optimal in the presence of action selection noise

ES ES

Exploration / Exploitation

� Several schemes for forcing exploration

� Simplest: random actions (ε greedy)
� Every time step, flip a coin

� With probability ε, act randomly

� With probability 1-ε, act according to current policy

� Problems with random actions?
� You do explore the space, but keep thrashing 
around once learning is done

� One solution: lower ε over time

� Another solution: exploration functions
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Exploration Functions

� When to explore

� Random actions: explore a fixed amount

� Better idea: explore areas whose badness is not (yet) 

established

� Exploration function

� Takes a value estimate and a count, and returns an optimistic 

utility, e.g.                                    (exact form not important)

Q-Learning

� Q-learning produces tables of q-values:

Q-Learning

� In realistic situations, we cannot possibly learn 
about every single state!
� Too many states to visit them all in training

� Too many states to even hold the q-tables in memory

� Instead, we want to generalize:
� Learn about some small number of training states 
from experience

� Generalize that experience to new, similar states

� This is a fundamental idea in machine learning, and 
we’ll see it over and over again

Example: Pacman

� Let’s say we discover 
through experience 
that this state is bad:

� In naïve q learning, we 
know nothing about 
this state or its q 
states:

� Or even this one!

Feature-Based Representations

� Solution: describe a state using 
a vector of features
� Features are functions from states 

to real numbers (often 0/1) that 
capture important properties of the 
state

� Example features:
� Distance to closest ghost

� Distance to closest dot

� Number of ghosts

� 1 / (dist to dot)2

� Is Pacman in a tunnel? (0/1)

� …… etc.

� Can also describe a q-state (s, a) 
with features (e.g. action moves 
closer to food)

Linear Feature Functions

� Using a feature representation, we can write a 
q function (or value function) for any state 
using a few weights:

� Advantage: our experience is summed up in a 
few powerful numbers

� Disadvantage: states may share features but 
be very different in value!
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Function Approximation

� Q-learning with linear q-functions:

� Intuitive interpretation:
� Adjust weights of active features

� E.g. if something unexpectedly bad happens, disprefer all states 
with that state’s features

� Formal justification: online least squares (much later)

Example: Q-Pacman

Policy Search Policy Search

� Problem: often the feature-based policies that work well 
aren’t the ones that approximate V / Q best
� E.g. your value functions from project 2 were probably horrible 

estimates of future rewards, but they still produced good 
decisions

� We’ll see this distinction between modeling and prediction again
later in the course

� Solution: learn the policy that maximizes rewards rather 
than the value that predicts rewards

� This is the idea behind policy search, such as what 
controlled the upside-down helicopter

Policy Search

� Simplest policy search:

� Start with an initial linear value function or q-function

� Nudge each feature weight up and down and see if 

your policy is better than before

� Problems:

� How do we tell the policy got better?

� Need to run many sample episodes!

� If there are a lot of features, this can be impractical

Policy Search*

� Advanced policy search:

� Write a stochastic (soft) policy:

� Turns out you can efficiently approximate the 

derivative of the returns with respect to the 

parameters w (details in the book, but you don’t have 

to know them)

� Take uphill steps, recalculate derivatives, etc.
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Take a Deep Breath…

� We’re done with search and planning!

� Next, we’ll look at how to reason with 
probabilities
� Diagnosis

� Tracking objects

� Speech recognition

� Robot mapping

� … lots more!

� Last part of course: machine learning


