
CS 186 – Fall 2002 11-27-2002

12/6/2002-GB-Version 2 Page 1

Solutions:

1. Yes. For example consider the following schedule deadlocks under 2PL

T1: X- Lock(A) W(A) X- Lock(B) …
T2: X- Lock(B) W(B) X- Lock(A) …

Strict 2PL also has the deadlock problem, while conservative 2PL avoids it by requesting all the locks
upfront.

2.

a) i. T1 � T2, T2 � T3, T1 � T3.
 ii. Yes – equivalent schedules: T1 � T2 � T3.

b) i. T2 � T1, T3 � T1, T1 � T2, T4 � T2
 ii. No – there are cycles in the precedence graph (T2 � T1, T1 � T2)

3.

 2PL Necessarily

conflict
Serializable

Necessarily
recoverable

Necessarily
ACR

Necessarily
Strict
Schedule

Necessarily
Serial
Schedule

May
Result in
Deadlock

a) Y Y Y Y Y N Y
b) Y Y Y Y Y Y N
c) Y Y N N N Y* Y
*Any non-serial schedule will result in deadlock. Notice that a schedule like
<L1(C); L2(B); …L2 executes to the end; L1(A); …L1 executes to the end> is (of course) legal but also
serial since the actions of T1 never started. The locks are not part of the transaction, only the scheduler.
The schedule
<L1(C); … ; U1(B); L2(B); … ;U2(B); CommitT1> (T1 executes but does not commit until after T2 is
done) was considered for this question to be serial for a similar reason - we only asked you to look at
the reads/write actions (i.e., un-committed reads were allowed), so a commit does not change the
serializeability of the transactions.

4.

a)

b) None, the conflict graph has a cycle.
c) Same as above with t4 removed.
d) T2 T1 T3

