

Formal Relational Query Languages
Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
Relational Algebra: More operational, very useful for representing execution plans.

Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-procedural, declarative.)

- Understanding Algebra \& Calculus is key to understanding SQL, query processing!

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
- Allows for much optimization.
- Query Languages != programming languages!
- QLs not expected to be "Turing complete".
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
- Schemas of input relations for a query are fixed (but query will run over any legal instance)
- The schema for the result of a given query is also fixed. It is determined by the definitions of the query language constructs.
- Positional vs. named-field notation:
- Positional notation easier for formal definitions, named-field notation more readable.
- Both used in SQL
- Though positional notation is not encouraged

Relational Algebra: 5 Basic Operations

- Selection (σ) Selects a subset of rows from relation (horizontal).
- Projection (π) Retains only wanted columns from relation (vertical).
- Cross-product (\times) Allows us to combine two relations.
- Set-difference $(-)$ Tuples in r1, but not in r2.
- Union (\cup) Tuples in r1 or in r2.

Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Example Instances R1

$\underline{\text { sid }}$	$\underline{\text { bid }}$	$\underline{\text { day }}$
22	101	$10 / 10 / 96$
58	103	$11 / 12 / 96$

Boats

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

S1

$\underline{\text { sid }}$	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Projection (π)

- Examples: $\pi_{\text {age }}(S 2) ; \pi_{\text {sname,rating }}(S 2)$
- Retains only attributes that are in the "projection list".
- Schema of result:
- exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates (How do they arise? Why remove them?)
- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

Selection (σ)

- Selects rows that satisfy selection condition.
- Result is a relation.

Schema of result is same as that of the input relation.

- Do we need to do duplicate elimination?

Union and Set-Difference

- Both of these operations take two input relations, which must be union-compatible:
- Same number of fields.
- `Corresponding' fields have the same type.
- For which, if any, is duplicate elimination required?

Cross-Product

- S1 \times R1: Each row of S1 paired with each row of R1.
- Q: How many rows in the result?
- Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
- May have a naming conflict. Both S1 and R1 have a field with the same name.
- In this case, can use the renaming operator:

$$
\rho(C(1 \rightarrow \operatorname{sid} 1,5 \rightarrow \operatorname{sid} 2), S 1 \times R 1)
$$

Compound Operator: Intersection

- In addition to the 5 basic operators, there are several additional "Compound Operators"
- These add no computational power to the language, but are useful shorthands.
- Can be expressed solely with the basic ops.
- Intersection takes two input relations, which must be unioncompatible.
- Q : How to express it using basic operators?

$$
R \cap S=R-(R-S)
$$

Compound Operator: Join

- Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a "natural join" (often just called "join"). R凶S conceptually is:
- Compute $\mathrm{R} \times \mathrm{S}$
- Select rows where attributes that appear in both relations have equal values
- Project all unique atttributes and one copy of each of the common ones.
- Note: Usually done much more efficiently than this.

Intersection							
sid	sname	rating	age				
22	dustin	7	45.0				
31	lubber	8	55.5				
58	rusty	10	35.0	sid	sname	rating	age
S1				$\begin{aligned} & 31 \\ & 58 \end{aligned}$	lubber rusty	$\begin{array}{\|l\|} \hline 8 \\ 10 \end{array}$	$\begin{aligned} & 55.5 \\ & 35.0 \end{aligned}$
sid	sname	rating	age	$S 1 \cap S 2$			
28	yuppy	9	35.0				
31	lubber	8	55.5				
44	guppy	5	35.0				
58	rusty	10	35.0				
S2							

Natural Join Example

sid	bid	day
22	101	$10 / 10 / 96$
58	103	$11 / 12 / 96$

R1

$\underline{\text { sid }}$	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1
$\mathbf{S 1 \bowtie} \triangleleft \mathbf{R} 1=$

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	$10 / 10 / 96$
58	rusty	10	35.0	103	$11 / 12 / 96$

Other Types of Joins						
- Condition Join (or "theta-join"):$R \bowtie{ }_{c} S=\sigma_{c}(R \times S)$						
(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96
$S 1 \bowtie{ }_{S 1 \text { sid }<R 1 \text { sid }}^{R 1}$						
- Result schema same as that of cross-product. - May have fewer tuples than cross-product. - Equi-Join: Special case: condition c contains only conjunction of equalities.						

Compound Operator: Division

- Useful for expressing "for all" queries like: Find sids of sailors who have reserved all boats.
- For A / B, attributes of B must be subset of attrs of A. - May need to "project" to make this happen.
- E.g., let A have 2 fields, x and $y ; B$ have only field y :
A / B contains all tuples (x) such that for every y tuple in
B, theA $A B$ an $\{(x)\}(\exists) y)$

Examples of Division A/B

Q for intuition: What is $(\mathrm{R} / \mathrm{S}) \times \mathrm{S}$?

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

A

B1

sno
s1
s2
s3
s4

A/B1

A/B2

A/B3

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
- (Also true of joins, but joins are so common that systems implement joins specially.)
- Idea: For $A(x, y) / B(y)$, compute all x values that are not 'disqualified' by some \boldsymbol{y} value in B.
$-x$ value is disqualified if by attaching y value from B, we obtain an $x y$ tuple that is not in A.

Disqualified x values: $\quad \pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)$
$A / B: \quad \pi_{x}(A)-$ Disqualified x values

Examples
Reserves

$\underline{\text { sid }}$	$\underline{\text { bid }}$	$\underline{\text { day }}$
22	101	$10 / 10 / 96$
58	103	$11 / 12 / 96$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	bname	color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

Find names of sailors who've reserved boat \#103

- Solution 1: $\pi_{\text {sname }}\left(\left(\sigma_{\text {bid }=103}\right.\right.$ Reserves $) \bowtie$ Sailors $)$
- Solution 2: $\pi_{\text {sname }}\left(\sigma_{b i d=103}(\right.$ Reserves \bowtie Sailors $\left.)\right)$

Find names of sailors who've reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
$\pi_{\text {sname }}\left(\left(\sigma_{\text {color }=\text { ' red }^{\prime}}\right.\right.$ Boats $) \bowtie$ Reserves \bowtie Sailors $)$
* A more efficient solution:
$\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\pi_{\text {bid }} \sigma_{\text {color }=\text { 'red }}{ }^{\prime}\right.\right.\right.$ Boats $\left.) \bowtie \operatorname{Res}\right) \bowtie$ Sailors $)$
- A query optimizer can find this given the first solution!

Find the names of sailors who've reserved all boats

- Uses division; schemas of the input relations to / must be carefully chosen:

$$
\begin{aligned}
& \rho\left(\text { Tempsids, }\left(\pi_{\text {sid,bid }} \text { Reserves }\right) /\left(\pi_{\text {bid }}^{\text {Boats })}\right)\right. \\
& \pi_{\text {sname }}(\text { Tempsids } \bowtie \text { Sailors })
\end{aligned}
$$

*To find sailors who' ve reserved all 'Interlake' boats:
$\ldots . . . \pi_{\text {bid }}\left(\sigma_{\text {bname }=\text { ' Interlake }}\right.$ Boats $)$

Find sailors who've reserved a red or a green boat

- Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$
\begin{aligned}
& \rho\left(\text { Tempboats, }\left(\sigma_{\text {color }}{ }^{\prime} \text { red' } v \text { color }=\text { 'green' }{ }^{\text {Boats })}\right)\right. \\
& \pi_{\text {sname }}(\text { Tempboats } \bowtie \text { Reserves } \bowtie \text { Sailors })
\end{aligned}
$$

Find sailors who've reserved a red and a green boat

- Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):
ρ (Tempred, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }=\text { 'red' }}{ }^{\prime}\right.\right.$ Boats $) \bowtie$ Reserves $\left.)\right)$
ρ (Tempgreen, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ ' $^{\text {green' }}{ }^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\pi_{\text {sname }}(($ Tempred \cap Tempgreen $) \bowtie$ Sailors $)$

Summary

- Relational Algebra: a small set of operators mapping relations to relations
- Operational, in the sense that you specify the explicit order of operations
- A closed set of operators! Can mix and match.
- Basic ops include: $\sigma, \pi, \times, \cup,-$
- Important compound ops: \cap, \bowtie, /

