
1

By relieving the brain of all unnecessary
work, a good notation sets it free to

concentrate on more advanced problems,
and, in effect, increases the mental power of

the race.
-- Alfred North Whitehead (1861 - 1947)

Relational Algebra

R & G, Chapter 4

π
Relational Query Languages

• Query languages: Allow manipulation and retrieval
of data from a database.

• Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic.
– Allows for much optimization.

• Query Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex calculations.
– QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

Relational Algebra: More operational, very
useful for representing execution plans.

Relational Calculus: Lets users describe what
they want, rather than how to compute it.
(Non-procedural, declarative.)

 Understanding Algebra & Calculus is key to
 understanding SQL, query processing!

Preliminaries

• A query is applied to relation instances, and the
result of a query is also a relation instance.
– Schemas of input relations for a query are fixed (but

query will run over any legal instance)
– The schema for the result of a given query is also

fixed. It is determined by the definitions of the
query language constructs.

• Positional vs. named-field notation:
– Positional notation easier for formal definitions,

named-field notation more readable.
– Both used in SQL

• Though positional notation is not encouraged

Relational Algebra: 5 Basic Operations

• Selection (σ) Selects a subset of rows from relation
(horizontal).

• Projection (π) Retains only wanted columns from
relation (vertical).

• Cross-product (×) Allows us to combine two relations.

• Set-difference (—) Tuples in r1, but not in r2.
• Union (∪) Tuples in r1 or in r2.

Since each operation returns a relation, operations can be
composed! (Algebra is “closed”.)

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

S1

S2

bid bname color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

Boats

Example Instances

2

Projection (π)
!age S()2• Examples: ;

• Retains only attributes that are in the “projection list”.
• Schema of result:

– exactly the fields in the projection list, with the same names that they
had in the input relation.

• Projection operator has to eliminate duplicates (How do
they arise? Why remove them?)
– Note: real systems typically don’t do duplicate elimination unless the

user explicitly asks for it. (Why not?)

!
sname rating

S
,

()2

Projection (π)

age

35.0

55.5

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2

sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

)2(
,

S
ratingsname

!

!age S()2

Selection (σ)

!
rating

S
>8

2()

sname rating
yuppy 9
rusty 10

! "
sname rating rating

S
,

(())
>8

2

• Selects rows that satisfy selection condition.
• Result is a relation.

Schema of result is same as that of the input relation.

• Do we need to do duplicate elimination?

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

Union and Set-Difference

• Both of these operations take two input relations, which must be
union-compatible:

– Same number of fields.
– `Corresponding’ fields have the same type.

• For which, if any, is duplicate elimination required?

Union

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1

S2

S S1 2!

Set Difference

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1

S2

sid sname rating age

22 dustin 7 45.0

S2 – S1

sid sname rating age

28 yuppy 9 35.0

44 guppy 5 35.0

S S1 2!

3

Cross-Product

• S1 × R1: Each row of S1 paired with each row of R1.

• Q: How many rows in the result?
• Result schema has one field per field of S1 and R1,

with field names `inherited’ if possible.
– May have a naming conflict: Both S1 and R1 have a field

with the same name.
– In this case, can use the renaming operator:

! ((,),)C sid sid S R1 1 5 2 1 1" " #

Cross Product Example

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1 S1

R1 X S1 =

Compound Operator: Intersection

• In addition to the 5 basic operators, there are several additional
“Compound Operators”

– These add no computational power to the
language, but are useful shorthands.

– Can be expressed solely with the basic ops.

• Intersection takes two input relations, which must be union-
compatible.

• Q: How to express it using basic operators?

R ∩ S = R − (R − S)

Intersection

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1

S2

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

!

S1"S2

Compound Operator: Join
• Joins are compound operators involving cross

product, selection, and (sometimes) projection.
• Most common type of join is a “natural join” (often

just called “join”). R S conceptually is:
– Compute R × S
– Select rows where attributes that appear in both relations

have equal values
– Project all unique atttributes and one copy of each of the

common ones.

• Note: Usually done much more efficiently than this.

Natural Join Example
sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1 S1

S1 R1 =

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

4

Other Types of Joins

• Condition Join (or “theta-join”):

• Result schema same as that of cross-product.
• May have fewer tuples than cross-product.
• Equi-Join: Special case: condition c contains only

conjunction of equalities.

R
c
S

c
R S>< = !" ()

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

11
.1.1
RS

sidRsidS <
<>

Compound Operator: Division

• Useful for expressing “for all” queries like:
Find sids of sailors who have reserved all boats.

• For A/B, attributes of B must be subset of attrs of A.
– May need to “project” to make this happen.

• E.g., let A have 2 fields, x and y; B have only field y:

A/B contains all tuples (x) such that for every y tuple in
B, there is an xy tuple in A.

!

A B = x " y # B($ x,y # A){ }

Examples of Division A/B

sno pno

s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2

s4 p2

s4 p4

pno

p2
pno

p2
p4

pno

p1
p2
p4

sno

s1

s2

s3

s4

sno

s1

s4
sno

s1

A

B1
B2

B3

A/B1 A/B2 A/B3

Q for intuition: What is (R/S)×S? Expressing A/B Using Basic Operators

• Division is not essential op; just a useful shorthand.
– (Also true of joins, but joins are so common that systems

implement joins specially.)
• Idea: For A(x,y)/B(y), compute all x values that are

not `disqualified’ by some y value in B.
– x value is disqualified if by attaching y value from B, we

obtain an xy tuple that is not in A.

Disqualified x values: ! !
x x

A B A((()))" #

 A/B: !
x
A() " Disqualified x values

Examples

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

bid bname color

101 Interlake Blue

102 Interlake Red

103 Clipper Green

104 Marine Red

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailors

Boats

Find names of sailors who’ve reserved boat #103

• Solution 1: ! "
sname bid

serves Sailors((Re))
=103

><

• Solution 2: ! "
sname bid

serves Sailors((Re))
=103

><

5

Find names of sailors who’ve reserved a red boat

• Information about boat color only available in
Boats; so need an extra join:

! "
sname color red

Boats serves Sailors((
' '

) Re)
=

>< ><

 A more efficient solution:

! ! ! "
sname sid bid color red

Boats s Sailors(((
' '

) Re))
=

>< ><

 A query optimizer can find this given the first solution!

Find sailors who’ve reserved a red or a green boat

• Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

! "(, (
' ' ' '

))Tempboats
color red color green

Boats
= # =

! sname Tempboats serves Sailors(Re)>< ><

Find sailors who’ve reserved a red and a green boat

• Cut-and-paste previous slide?

!

" (Tempboats,(#
color='red '$color='green '

Boats))

! sname Tempboats serves Sailors(Re)>< ><

Find sailors who’ve reserved a red and a green boat

• Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors who’ve
reserved green boats, then find the intersection
(note that sid is a key for Sailors):

! " #(, ((
' '

) Re))Tempred
sid color red

Boats serves
=

><

! sname Tempred Tempgreen Sailors(())" ><

! " #(, ((
' '

) Re))Tempgreen
sid color green

Boats serves
=

><

Find the names of sailors who’ve reserved all boats

• Uses division; schemas of the input relations
to / must be carefully chosen:

! " "(, (
,

Re) / ())Tempsids
sid bid

serves
bid
Boats

! sname Tempsids Sailors()><

 To find sailors who’ve reserved all ‘Interlake’ boats:

/ (
' '

)! "
bid bname Interlake

Boats
=

.....

Summary

• Relational Algebra: a small set of operators
mapping relations to relations
– Operational, in the sense that you specify the

explicit order of operations
– A closed set of operators! Can mix and match.

• Basic ops include: σ, π, ×, ∪, —
• Important compound ops: ∩, , /

