Relational Algebra

4

R & G, Chapter 4

By relieving the brain of all unnecessary
work, a good notation sets it free to
concentrate on more advanced problems,
and, in effect, increases the mental power of
the race.

-- Alfred North Whitehead (1861 - 1947)

Relational Query Languages

e Query languages: Allow manipulation and retrieval
of data from a database.

¢ Relational model supports simple, powerful QLs:
— Strong formal foundation based on logic.
— Allows for much optimization.

¢ Query Languages != programming languages!
— QLs not expected to be “Turing complete”.
— QLs not intended to be used for complex calculations.
— QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

Relational Algebra: More operational, very
useful for representing execution plans.

Relational Calculus: Lets users describe what
they want, rather than how to compute it.
(Non-procedural, declarative.)

r Understanding Algebra & Calculus is key to
understanding SQL, query processing!

ﬁ Preliminaries

* A query is applied to relation instances, and the
result of a query is also a relation instance.

— Schemas of input relations for a query are fixed (but
query will run over any legal instance)

— The schema for the result of a given query is also
fixed. It is determined by the definitions of the
query language constructs.

¢ Positional vs. named-field notation:

— Positional notation easier for formal definitions,
named-field notation more readable.

— Both used in SQL

* Though positional notation is not encouraged

ﬁ Relational Algebra: 5 Basic Operations

e Selection (o) Selects a subset of rows from relation
(horizontal).

* Projection (=) Retains only wanted columns from
relation (vertical).

e Cross-product (x) Allows us to combine two relations.

o Set-difference (—) Tuplesin r1, but not in r2.

e Union (U) Tuplesinrl orinr2.

Since each operation returns a relation, operations can be
composed! (Algebra is “closed”.)

ﬁ Example Instances R1 [sid |bid | day
22 [101 [10/10/96
58 103 |11/12/96

g1 |sid |sname |rating |age

Boats

vid [) 22 |dustin 7 45.0
bid |bname |color

101 |Interlake |blue 31 \lubber 8 335
102 |Interlake |red 58 |rusty 10 [35.0

103 |Clipper |green

104 |Marine |red S2 |sid |sname |rating |age

28 |yuppy 9 35.0
31 |lubber | 8 55.5
44 |guppy 5 35.0
58 |rusty 10 |35.0

ﬁ Projection (i)

e Examples: ﬂage(SZ) ;T (82)

sname,rating

¢ Retains only attributes that are in the “projection list”.
e Schema of result:
— exactly the fields in the projection list, with the same names that they
had in the input relation.
» Projection operator has to eliminate duplicates (How do
they arise? Why remove them?)

— Note: real systems typically don’t do duplicate elimination unless the
user explicitly asks for it. (Why not?)

ﬁ Selection (O)

o Selects rows that satisfy selection condition.

¢ Result is a relation.
Schema of result is same as that of the input relation.
¢ Do we need to do duplicate elimination?

sid |sname |rating |age
% yuppy 2 310 sname |rating
J TaoUOTT (&) JF.J
euppy——5—356-| |YUPPY |9
58 |rusty 0 |35.0 rusty |10
Ora ting> 8(S2) nsname,ratin g(aratin g> 8(82))

ﬁ Union

sid |sname |rating |age sid |sname |rating |age

22 dustin | 7 [45.0] |22 |dustin |7 450

31 |lubber |8 55.5
31 |lubber | 8 55.5 58 |rusty |10 35.0
S1 28 |yuppy |9 35.0

sid |sname |rating |age S1US2

28 |yuppy 9 35.0
31 |lubber | 8 55.5
44 |guppy 5 35.0
58 |rusty 10 |35.0

S2

ﬁ Projection (J'[) sname |rating
yuppy |9
lubber |8
guppy |5
rusty |10
sid |sname |rating |age JT . (82)
28 |yuppy 9 350 sname,rating
31 |lubber | 8 55.5
44 |guppy 5 35.0
58 |rusty | 10 [35.0 age
52 35.0
55.5
JT age(SZ)
ﬁ Union and Set-Difference
* Both of these operations take two input relations, which must be
union-compatible:
— Same number of fields.
— " Corresponding’ fields have the same type.
* For which, if any, is duplicate elimination required?
ﬁ Set Difference
sid [sname |rating |age sid |sname |rating |age
22 |dustin | 7 [45.0] [22 |dustin |7 45.0

31 |lubber | 8 55.5 S1-S2
58 |rusty 10 (35.0
S1
sid |sname |rating |age sid |sname |rating |age

28 |yuppy 9 35.0 28
31 |lubber | 8 55.5 44
44 |guppy 5 35.0
58 |rusty 10 |35.0

S2

yuppy | 9 35.0
guppy 5 35.0

§2- 81

ﬁ Cross-Product Cross Product Example

¢ S1 x R1: Each row of S1 paired with each row of R1. sid |bid day sid |sname |rating |age

* Q: How many rows in the result? 22 101 [10/10/96 22 |dustin | 7 145.0

e Result schema has one field per field of S1 and R1, 58 |103 |11/12/96 31 |lubber | 8 55.5
with field names " inherited’ if possible. 1 58 sty | 10 |35.0
- May have a naming conflict: Both S1 and R1 have a field S1

with the same name.
— In this case, can use the renaming operator:

(sid) [sname |rating age |(sid) |bid |day

22 |dustin | 7 |450 | 22 |101 [10/10/96
p (C(—sidl,5—>sid2), S1x R1) R1XS1= 22 |dustin | 7 [45.0 | 58 [103 |11/12/9
31 |lubber 8 55.5 | 22 |101 |10/10/96
31 |lubber | 8 |555 | 58 |103 |11/12/96
58 |rusty 10 (35.0 | 22 |101 (10/10/96
58 |rusty 10 |(35.0 | 58 |103 |11/12/96

ﬁ Compound Operator: Intersection ﬁlntersection
id

« In addition to the 5 basic operators, there are several additional sid |sname rating age
“Compound Operators”

— These add no computational power to the

22 |dustin 7 45.0
31 |lubber | 8 55.5

language, but are useful shorthands. ; .
i i 58 |rusty 10 [35.0 sid |sname |rating |age
— Can be expressed solely with the basic ops. 31 |lubber |8 55.5
s1 58 |rusty |10 35.0
* Intersection takes two input relations, which must be union- sid |sname |rating |age
compatible. 28 |yuppy | 9 [35.0 S1NMS2
* Q: How to express it using basic operators? 31 |lubber 8 55.5
RNS=R -(R-5) 44 |guppy | 5 [35.0
58 |rusty 10 [35.0
S2
. - - -
Compound Operator: Join - Natural Join Example
¢ Joins are compound operators involving cross =l bl day sid |sname [rating |age
product, selection, and (sometimes) projection. e o/ 22 |dustin | 7 450
e Most common type of join is a “natural join" (often 22\ 101 110710196 31 |lubb] 55.5
just called “join”). RP}XIS conceptually is: 58 |103 |11/12/96 ubber ’
58 |rusty 10 (35.0
— Compute R x S R1
— Select rows where attributes that appear in both relations S1
have equal values
— Project all unique atttributes and one copy of each of the S1D><R1 =
common ones.
¢ Note: Usually done much more efficiently than this. sid |sname [rating |age |bid |day
22 dustin |7 45.0 (101 |10/10/96
58 rusty |10 35.0 103 |11/12/96

ﬁ Other Types of Joins

¢ Condition Join (or “theta-join”):
Rp< .S =0 (RxS)

(sid) |sname |rating |age |(sid) |bid |day

22 dustin |7 45.0 |58 103 |11/12/96
31 lubber |8 55.5 |58 103 |11/12/96
ST Rl

P Sl sid <Rl sid

* Result schema same as that of cross-product.

* May have fewer tuples than cross-product.

e Equi-Join: Special case: condition ¢ contains only
conjunction of equalities.

ﬁ Compound Operator: Division

o Useful for expressing “for all” queries like:
Find sids of sailors who have reserved all boats.

e For A/B, attributes of B must be subset of attrs of A.
— May need to “project” to make this happen.
e E.g., let A have 2 fields, x and y; B have only field y:

A/B contains a]l tuples (x) such that for every y tuple in
B, thefg/igm{"x y)rEA.B(EI<x,y € A)F

@l Examples of Division A/B
Q for intuition: What is (R/S)xS?

Expressing A/B Using Basic Operators

« Division is not essential op; just a useful shorthand.
— (Also true of joins, but joins are so common that systems
implement joins specially.)
e Idea: For A(x,y)/B(y), compute all x values that are
not “disqualified’ by some y value in B.

— x value is disqualified if by attaching y value from B, we
obtain an xy tuple that is not in A.

Disqualified x values: 7T x ((ﬂ x(A)XB)_A)

A/B: T x(A) — Disqualified x values

sno |pno pno pno e

sl |pl p2 P2 pl

A B1 pé P2

oo B2 p

sl |p4 B3

s2 |pl sno

s2 |p2 sl

s3 |p2 s2 sno

s4 |p2 s3 sl o0

s4 |p4 s4 s4 =

A AB1 AB2 A/B3

ﬁ Exa m pleS Reserves sid bid day

22 {101 |10/10/96
58 |103 |11/12/96

sid [sname |rating |age

Sailors |22 |dustin | 7 45.0

31 |lubber 8 55.5
58 |rusty 10 (35.0

Boats bid | bname |color
101 |Interlake |Blue
102 |Interlake |Red
103 |Clipper |Green
104 |Marine |Red

Find names of sailors who've reserved boat #103

* Solution 1: Reserves)><t Sailors)

7 sname((© pig_103

- Solution 2: 7, .., (O bid= 103(Reserves><1 Sailors))

Find names of sailors who've reserved a red boat

« Information about boat color only available in
Boats; so need an extra join:

T o Boats) ><1 Reserves><t Sailors
sname((color="red'))
< A more efficient solution:

n

Sname(ﬂsid((”bidacolor Zred' Boats) >< Res)><t Sailors)

w A query optimizer can find this given the first solution!

Find sailors who've reserved a red and a green boat

¢ Cut-and-paste previous slide?

Find sailors who've reserved a red or a green boat

¢ Can identify all red or green boats, then find
sailors who've reserved one of these boats:

T B
p (Tempboats, (Gcolor=' red' v color='green' oats))

 J— e(T empboatst<i Reservesr<i Sailors)

Find sailors who've reserved a red and a green boat

¢ Previous approach won’t work! Must identify
sailors who've reserved red boats, sailors who've
reserved green boats, then find the intersection
(note that sid is a key for Sailors):
T d, © o Boats)><t Re
p (Tempred, si d((color < red" 2% 's) serves))

p (Tempgreen, m d((o , Boats)r<i Reserves))

color = green

7 snam(Tempred N Tempgreen) > Sailors)

Find the names of sailors who've reserved all boats

¢ Uses division; schemas of the input relations
to / must be carefully chosen:

p (Tempsids, (n:si d.bi dReserves) / (7 bid Boats))

T gname (Tempsids > Sailors)

« To find sailors who've reserved all ‘Interlake’ boats:

Boats)

/o bid (© bname = Interlaké

Summary

¢ Relational Algebra: a small set of operators
mapping relations to relations

— Operational, in the sense that you specify the
explicit order of operations

— A closed set of operators! Can mix and match.
* Basic ops include: o, m, x, U, —
¢ Important compound ops: N, /

