External Sorting
R & G Chapter 13

One of the advantages of being
disorderly is that one is
constantly making exciting
discoveries.

A. A. Milne

B Why Sort?

A classic problem in computer science!

o Data requested in sorted order

— e.g., find students in increasing gpa order

Sorting is first step in bulk loading B+ tree index.

¢ Sorting useful for eliminating duplicate copies in a
collection of records (Why?)

¢ Sorting is useful for summarizing related groups of
tuples

* Sort-merge join algorithm involves sorting.

¢ Problem: sort 1TB of data with 1GB of RAM.

— why not virtual memory?

@ Streaming Data Through RAM

¢ An important detail for sorting & other DB operations
¢ Simple case:

— Compute f(x) for each record, write out the result

— Read a page from INPUT to Input Buffer

— Write f(x) for each item to Output Buffer

— When Input Buffer is consumed, read another page

— When Output Buffer fills, write it to OUTPUT
e Reads and Writes are not coordinated

- E.g., if f() is Compress(), you read many pages per write.

— E.g., if f() is DeCompress(), you write many pages per read.

Input Output
Buffer f() Buffer

\/ RAM

ﬁ 2-Way Sort

e Pass 0: Read a page, sort it, write it.

— only one buffer page is used (as in previous slide)
e Pass 1, 2, ..., etc.:

— requires 3 buffers

— merge pairs of runs into runs twice as long

— el :
—— i
Disk Main memory buffers Disk

ﬁTwo-Way External Merge Sort

(34 [62] [o4] 6] (34l [2] Input file
Each pass we read + ASS 0

write each page in file.
N pages in the file => the
number of passes
=[log, N]+1
So total cost is:
2N([log, N1+1)

Idea: Divide and
conquer: sort subfiles
and merge

P.
(2] Il 1-pageruns

E
leg [8o] [58]

PASS 1

2-page runs

&
lad]
leg Le]

PASS 2

4-page runs

PASS 3

8-page runs|

B General External Merge Sort

w More than 3 buffer pages. How can we utilize them?
* To sort a file with N pages using B buffer pages:

— Pass 0: use B buffer pages. Produce [N/B] sorted runs of
B pages each.

- Pass 1, 2, ..., etc.: merge B-1runs.

i Cost of External Merge Sort

o Number of passes: 1+[logg[N/B1]
e Cost = 2N * (# of passes)
¢ E.g., with 5 buffer pages, to sort 108 page
file:
— Pass 0: [108/5] = 22 sorted runs of 5 pages
each (last run is only 3 pages)
¢ Now, do four-way (B-1) merges
— Pass 1: [22/4] = 6 sorted runs of 20 pages each
(last run is only 8 pages)
— Pass 2: 2 sorted runs, 80 pages and 28 pages
— Pass 3: Sorted file of 108 pages

ﬁ Number of Passes of External Sort

(1/0O cost is 2N times number of passes)

57

N B=3 |B=5 |B=9 |B=17 |B=129 B=2
100 7 4 3 2 1 1
1,000 10 |5 4 3 2 2
10,000 13 |7 5 4 2 2
100,000 17 |9 6 5 3 3
1,000,000 20 | 10 7 5 3 3
10,000,000 23 |12 8 6 4 3
100,000,000 | 26 | 14 9 7 4 4
1,000,000,000{ 30 | 15 10 8 5 4

Internal Sort Algorithm

e Quicksort is a fast way to sort in memory.

¢ Alternative: “tournament sort” (a.k.a. “heapsort”,
“replacement selection”)

¢ Keep two heaps in memory, H1 and H2

read B-2 pages of records, inserting into H1;
while (records left) {

m = Hl.removemin(); put m in output buffer;
if (H1 is empty)
H1 = H2; H2.reset(); start new output run;

else
read in a new record r (use 1 buffer for
input pages);
if (r < m) H2.insert(r);
else Hl.insert(r);
}
Hl.output(); start new run; H2.output();

B More on Heapsort

o Fact: average length of a run is 2(B-2)
— The “snowplow” analogy

o Worst-Case: = r
— What is min length of a run?
— How does this arise?

o Best-Case:
— What is max length of a run? |c—_‘:°'|\%:ifii”
— How does this arise?

¢ Quicksort is faster, but ... longer runs often
means fewer passes!

@ 1/ for External Merge Sort

e Actually, doing I/O a page at a time
— Not an I/O per record
e In fact, read a block (chunk) of pages
sequentially!
e Suggests we should make each buffer
(input/output) be a chunk of pages.
— But this will reduce fan-out during merge
passes!
— In practice, most files still sorted in 2-3
passes.

Number of Passes of Optimized

Sort
N B=1,000 [[B=5,000 |B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

v Block size = 32, initial pass produces runs of size 2B.

Sorting Records!

e Sorting has become a blood sport!
— Parallel sorting is the name of the game ...
e Minute Sort: how many 100-byte records can you
sort in a minute?
— Typical DBMS: in the MBs?
— Current World record: 116 GB
* 40 Dual-Processor Itanium2-based PCs, 2,520-disk RAID array
— Estimated cost > $9M
e Penny Sort: how many can you sort for a penny?
— Current world record: 40GB
+ 1541 seconds on a $614 Linux/AMD system (2003)

* $614 spread over 3 years worth of seconds
= 1541 seconds/penny

e See http://research.microsoft.com/barc/SortBenchmark/

Using B+ Trees for Sorting

e Scenario: Table to be sorted has B+
tree index on sorting column(s).

e Idea: Can retrieve records in order by
traversing leaf pages.

e Is this a good idea?
¢ Cases to consider:

— B+ tree is clustered Good idea!
— B+ tree is not clustered Could be a very
bad idea!

Clustered B+ Tree Used for
Sorting

e Cost: root to the left-
most leaf, then
retrieve all leaf
pages (Alternative 1)

o If Alternative 2 is
used? Additional
cost of retrieving] l%l %] l:l\l‘:\‘llil
data records: each
page fetched just Data Records
once.

w Better than external sorting!

Index
(Directs search)

Data Entries
("Sequence set")

Unclustered B+ Tree Used for
Sorting

e Alternative (2) for data entries; each
data entry contains rid of a data
record. In general, one I/O per data

record!
Index

Ay fd [Cemene st

Data Records

= External Sorting vs. Unclustered

Index
N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 {{600,000 100,000 |1,000,000 |10,000,000
1,000,000 /8,000,000 1,000,000 |10,000,000 |100,000,000

10,000,000i{80,000,000|10,000,000{100,000,000 |1,000,000,000

w p: # of records per page

w B=1,000 and block size=32 for sorting

w p=100 is the more realistic value.

Summary

o External sorting is important; some DBMSs
may dedicate part of buffer pool for sorting!
¢ External merge sort minimizes disk I/O cost:

— Pass 0: Produces sorted runs of size B (# buffer
pages). Later passes: merge runs.

— # of runs merged at a time depends on B, and
block size.

— Larger block size means less I/O cost per page.
— Larger block size means smaller # runs merged.
— In practice, # of passes rarely more than 2 or 3.

Summary, cont.

matter:
— Quicksort: Quick!

e Choice of internal sort algorithm may

— Heap/tournament sort: slower (2x), longer
runs

e The best sorts are wildly fast:

— Despite 40+ years of research, we're still
improving!

e Clustered B+ tree is good for sorting;
unclustered tree is usually very bad.

