
1

External Sorting

R & G Chapter 13

One of the advantages of being
disorderly is that one is
constantly making exciting
discoveries.
 A. A. Milne

Why Sort?

• A classic problem in computer science!
• Data requested in sorted order

– e.g., find students in increasing gpa order

• Sorting is first step in bulk loading B+ tree index.
• Sorting useful for eliminating duplicate copies in a

collection of records (Why?)
• Sorting is useful for summarizing related groups of

tuples
• Sort-merge join algorithm involves sorting.
• Problem: sort 1TB of data with 1GB of RAM.

– why not virtual memory?

f(x)
RAM

Input
Buffer

Output
Buffer

OUTPUTINPUT

Streaming Data Through RAM

• An important detail for sorting & other DB operations
• Simple case:

– Compute f(x) for each record, write out the result
– Read a page from INPUT to Input Buffer
– Write f(x) for each item to Output Buffer
– When Input Buffer is consumed, read another page
– When Output Buffer fills, write it to OUTPUT

• Reads and Writes are not coordinated
– E.g., if f() is Compress(), you read many pages per write.
– E.g., if f() is DeCompress(), you write many pages per read.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

2-Way Sort

• Pass 0: Read a page, sort it, write it.
– only one buffer page is used (as in previous slide)

• Pass 1, 2, …, etc.:
– requires 3 buffers
– merge pairs of runs into runs twice as long

Two-Way External Merge Sort

• Each pass we read +
write each page in file.

• N pages in the file => the
number of passes

= log2 N +1
• So total cost is:
 2N( log2 N +1)

• Idea: Divide and
conquer: sort subfiles
and merge

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

General External Merge Sort

• To sort a file with N pages using B buffer pages:
– Pass 0: use B buffer pages. Produce  N/B  sorted runs of

B pages each.
– Pass 1, 2, …, etc.: merge B-1 runs.

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

 More than 3 buffer pages. How can we utilize them?

2

Cost of External Merge Sort

• Number of passes: 1+logB-1N/B 
• Cost = 2N * (# of passes)
• E.g., with 5 buffer pages, to sort 108 page

file:
– Pass 0:  108/5  = 22 sorted runs of 5 pages

each (last run is only 3 pages)

• Now, do four-way (B-1) merges
– Pass 1:  22/4  = 6 sorted runs of 20 pages each

(last run is only 8 pages)
– Pass 2: 2 sorted runs, 80 pages and 28 pages
– Pass 3: Sorted file of 108 pages

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

(I/O cost is 2N times number of passes)

Internal Sort Algorithm
• Quicksort is a fast way to sort in memory.
• Alternative: “tournament sort” (a.k.a. “heapsort”,

“replacement selection”)
• Keep two heaps in memory, H1 and H2

read B-2 pages of records, inserting into H1;
while (records left) {

m = H1.removemin(); put m in output buffer;
if (H1 is empty)

H1 = H2; H2.reset(); start new output run;
else

read in a new record r (use 1 buffer for
input pages);

if (r < m) H2.insert(r);
else H1.insert(r);

}
H1.output(); start new run; H2.output();

More on Heapsort

• Fact: average length of a run is 2(B-2)
– The “snowplow” analogy

• Worst-Case:
– What is min length of a run?
– How does this arise?

• Best-Case:
– What is max length of a run?
– How does this arise?

• Quicksort is faster, but … longer runs often
means fewer passes!

B

I/O for External Merge Sort

• Actually, doing I/O a page at a time
– Not an I/O per record

• In fact, read a block (chunk) of pages
sequentially!

• Suggests we should make each buffer
(input/output) be a chunk of pages.
– But this will reduce fan-out during merge

passes!
– In practice, most files still sorted in 2-3

passes.

Number of Passes of Optimized
Sort

N B=1,000 B=5,000 B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

 Block size = 32, initial pass produces runs of size 2B.

3

Sorting Records!

• Sorting has become a blood sport!
– Parallel sorting is the name of the game ...

• Minute Sort: how many 100-byte records can you
sort in a minute?
– Typical DBMS: in the MBs?
– Current World record: 116 GB

• 40 Dual-Processor Itanium2-based PCs, 2,520-disk RAID array
– Estimated cost > $9M

• Penny Sort: how many can you sort for a penny?
– Current world record: 40GB

• 1541 seconds on a $614 Linux/AMD system (2003)
• $614 spread over 3 years worth of seconds

= 1541 seconds/penny

• See http://research.microsoft.com/barc/SortBenchmark/

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+
tree index on sorting column(s).

• Idea: Can retrieve records in order by
traversing leaf pages.

• Is this a good idea?
• Cases to consider:

– B+ tree is clustered Good idea!
– B+ tree is not clustered Could be a very

bad idea!

Clustered B+ Tree Used for
Sorting

• Cost: root to the left-
most leaf, then
retrieve all leaf
pages (Alternative 1)

• If Alternative 2 is
used? Additional
cost of retrieving
data records: each
page fetched just
once.

 Better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Unclustered B+ Tree Used for
Sorting

• Alternative (2) for data entries; each
data entry contains rid of a data
record. In general, one I/O per data
record!

External Sorting vs. Unclustered
Index

N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

 p: # of records per page
 B=1,000 and block size=32 for sorting
 p=100 is the more realistic value.

Summary

• External sorting is important; some DBMSs
may dedicate part of buffer pool for sorting!

• External merge sort minimizes disk I/O cost:
– Pass 0: Produces sorted runs of size B (# buffer

pages). Later passes: merge runs.
– # of runs merged at a time depends on B, and

block size.
– Larger block size means less I/O cost per page.
– Larger block size means smaller # runs merged.
– In practice, # of passes rarely more than 2 or 3.

4

Summary, cont.

• Choice of internal sort algorithm may
matter:
– Quicksort: Quick!
– Heap/tournament sort: slower (2x), longer

runs
• The best sorts are wildly fast:

– Despite 40+ years of research, we’re still
improving!

• Clustered B+ tree is good for sorting;
unclustered tree is usually very bad.

