Tree-Structured Indexes

Lecture 5
R & G Chapter 10

“If I had eight hours to chop down a
tree, I'd spend six sharpening my ax.”

Abraham Lincoln

ﬁReview: Files, Pages, Records

* Abstraction of stored data is “files” of “records”.
— Records live on pages
— Physical Record ID (RID) = <page#, slot#>
* Variable length data requires more sophisticated structures for
records and pages. (why?)
— Records: offset array in header
— Pages: Slotted pages w/internal offsets & free space area
« Often best to be “lazy” about issues such as free space management,
exact ordering, etc. (why?)
* Files can be unordered (heap), sorted, or kinda sorted (i.e.,
“clustered”) on a search key.

— Tradeoffs are update/maintenance cost vs. speed of accesses via the
search key.

— Files can be clustered (sorted) at most one way.

« Indexes can be used to speed up many kinds of accesses. (i.e.,
“access paths”)

ﬁTree-Structured Indexes: Introduction

¢ Selections of form field <op> constant

o Equality selections (op is =)
— Either “tree” or “hash” indexes help here.

» Range selections (op is one of <, >, <=, >=, BETWEEN)
— “Hash” indexes don't work for these.

» Tree-structured indexing techniques support both range
selections and equality selections.

o ISAM: static structure; early index technology.

e B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

e ISAM =Indexed Sequential Access Method

ﬁ A Note of Caution

¢ ISAM is an old-fashioned idea
— B+-trees are usually better, as we'll see
» Though not always
» But, it's a good place to start

— Simpler than B+-tree, but many of the same
ideas

¢ Upshot

— Don’t brag about being an ISAM expert on
your resume

— Do understand how they work, and tradeoffs
with B+-trees

B Range Searches

e ' Find all students with gpa > 3.0"

— If data is in sorted file, do binary search to find
first such student, then scan to find others.
— Cost of binary search in a database can be quite
high. Q: Why???
o Simple idea: Create an "index file.

|
e || [ W] Index File

\

\
4
Page N ‘ Data File

w Can do binary search on (smaller) index file!

H Page 1 H Page 2 H Page 3 ‘

ﬁ ISAM index ent[y‘

Po | Kq|Py| Ka|P, s o o Km|Pm

47

¢ Index file may still be quite large. But we can
apply the idea repeatedly!

Non-leaf
Pages

et :%1@\: :(u?b) O s 8
= e vy s

w Leaf pages contain data entries.




Example ISAM Tree

o Index entries:<search key value, page id>
they direct search for data entries in /eaves.
+ Example where each node can hold 2 entries;

== Data Pages

ISAM is a STATIC Structure

File creation: Leaf (data) pages allocated Index Pages
sequentially, sorted by search key; then
index pages allocated, then overflow pgs.
Search: Start at root; use key
comparisons to go to leaf. Cost =logN;
F = # entries/pg (i.e., fanout), N = # leaf pgs

— no need for *next-leaf-page’ pointers. (Why?)

Insert. Find leaf that data entry belongs to, and
put it there. Overflow page if necessary.
Delete: Find and remove from leaf; if empty
page, de-allocate.

Overflow pages

Static tree structure: inserts/deletes affect only leaf pages.

Example: Insert 23*, 48%, 41*, 42*

Root —n

@]
e
Pages

5
20 33 51 63
T T Lo

|
|
Primary \1 é;
Leaf ‘ 10 ‘ 15+ ‘ lzo' 21 . ‘

\ \

w
8
w
4
a
5
a
2
a
@
a
@
8
©
g

Pages

Overflow 23 ‘ 4+ 41

Pages
42+

... then Deleting 42*, 51%*, 97*
Root —.
Index m!l
Pages
T ITR 1 ‘i‘ 1
:rinf\ary \1 é;
[ (w17 ([ [ ][] [=] ]

Pages

Overflow

-

‘ 48+ 41"
N

Pages

w Note that 51* appears in index levels, but not in leaf!

ISAM ---- Issues?

e Pros
—?7?77?

e Cons
-7

B+ Tree: The Most Widely Used Index

¢ Insert/delete at log ; N cost; keep tree height-
balanced.
— F =fanout, N = # leaf pages

¢ Minimum 50% occupancy (except for root). Each
node contains m entries where d <= m <= 2d entries. “d" is
called the order of the tree.

« Supports equality and range-searches efficiently.

¢ Asin ISAM, all searches go from root to leaves, but
structure is dynamic.

Index Entries
(Direct search)

Data Entries
("Sequence set")




Example B+ Tree

¢ Search begins at root, and key
comparisons direct it to a leaf (as in ISAM).

e Search for 5%, 15%, all data entries >= 24*

Root

o A . A A . A .
‘z* ‘3"5‘ ‘7‘ ‘14"19‘ ‘ ‘ ‘19"20' 22" ‘ ‘24"27"29" ‘ ‘33"34"38"39"

w= Based on the search for 15%, we know it is not in the tree!

B+ Trees in Practice

¢ Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133
¢ Typical capacities:
— Height 2: 1333 = 2,352,637 entries
— Height 3: 1334 = 312,900,700 entries
¢ Can often hold top levels in buffer pool:
— Level 1 = 1page = 8 Kbytes
— Level 2 = 133 pages = 1 Mbyte
— Level 3 = 17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

¢ Find correct leaf L.
¢ Put data entry onto L.
- If L has enough space, done!
— Else, must split L (into L and a new node L2)
« Redistribute entries evenly, copy up middle key.
« Insert index entry pointing to L2 into parent of L.
¢ This can happen recursively

— To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

¢ Splits “grow” tree; root split increases height.
— Tree growth: gets wider or one level taller at top.

Example B+ Tree — Inserting 8*

‘z* ‘3"5‘ ‘7‘ ‘w‘w‘ ‘ ‘ ‘19"20' 22" ‘ ‘zr‘zr‘zw‘ ‘33"34"38"39"

Example B+ Tree - Inserting 8*

AR N N ¥ A A
O e ) i W S G

+“ Notice that root was split, leading to increase in height.

« In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

Data vs. Index Page Split

(from previous example of inserting “8*")

Observe how B:;Z i)
minimum Split

occupancy is

guaranteed in BEN ﬁ*"‘\"\“‘\ KR

both leaf and
index pg splits.

e [T =]

difference

between copy- st I

up and push-

up; be sure 5 |13 24][ 30

vou /H 15

understand the
reasons for




Deleting a Data Entry from a B+ Tree

e Start at root, find leaf L where entry belongs.
¢ Remove the entry.

- If L is at least half-full, done!

— If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

o If re-distribution fails, merge L and sibling.
 If merge occurred, must delete entry (pointing to
L or sibling) from parent of L.

¢ Merge could propagate to root, decreasing height.

Example Tree (including 8*)
Delete 19* and 20* ...

il Example Tree (including 8*)
Delete 19* and 20* ...
Roo\
£ A A £ A VN VN
s I e o I S K

¢ Deleting 19* is easy.
¢ Deleting 20* is done with re-

distribution. Notice how middle key is
copied up.

Root\;
"L LT
[>T
1 2 e e 5 s
= H X
[ ... And Then Deleting 24

e Must merge.

¢ Observe " toss of
index entry (on

right), and ~ pull PN
down' of index entry [z [z [ ] | [ [our [on [oo |
(below).

Vo N
O O 3 s S W S ES

Example of Non-leaf Re-distribution

¢ Tree is shown below during deletion of 24*.
(What could be a possible initial tree?)

¢ In contrast to previous example, can re-
distribute entry from left child of root to right
child.

3 e e e i

After Re-distribution

o Intuitively, entries are re-distributed by " pushing
through' the splitting entry in the parent node.

« It suffices to re-distribute index entry with key
20; we've re-distributed 17 as well for illustration.

A A A P A A
(2= L=l o] T[] T Jeted [ Jfeferteef Jiotelefe]




Prefix Key Compression

¢ Important to increase fan-out. (Why?)

« Key values in index entries only " direct traffic’;
can often compress them.

- E.g., If we have adjacent index entries with search
key values Dannon Yogurt, David Smith and
Devarakonda Murthy, we can abbreviate David
Smith to Dav. (The other keys can be compressed
too ...)

 Is this correct? Not quite! What if there is a data entry
Davey Jones? (Can only compress David Smith to Davi)

« In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

¢ Insert/delete must be suitably modified.

Bulk Loading of a B+ Tree

« If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

— Also leads to minimal leaf utilization --- why?

e Bulk Loading can be done much more efficiently.

o Initialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

Root : :
Sorted pages of data entries; not yet in B+ tree

Bulk Loading (Contd.)

S
Root"[[1o] ]
¢ Index entries for

leaf pages always  [[5T[ ] (e[ ) [[=l[s]] ryerimprues
entered into right-

most index page J \ o, ,

just above leaf ~ [3T#] (s [tofit] [12{131 [20fe] st} [ssthe
level. When this

fills up, it splits. .

(Split may go up Root T[]

right-most path to i ata entry pages

the root_) Iml.l Eo: yet :r:y Bp+ ?ree
* Muchfasterthan o1 ) o]l ) (&1 [=[1

repeated inserts, /

especially when ong” .~ v s 7 . N
coﬁsiderz locking! (3]« ] [6°]o] [ofit] (12431 [20f22] [23751] [35Tse7] [se a1

Summary of Bulk Loading

¢ Option 1: multiple inserts.

— Slow.

— Does not give sequential storage of leaves.
¢ Option 2: Bulk Loading

— Has advantages for concurrency control.

— Fewer I/Os during build.

— Leaves will be stored sequentially (and
linked, of course).

— Can control “fill factor” on pages.

B A Note on " Order’

e Order (d) concept replaced by physical space
criterion in practice (" at least half-full).
— Index pages can typically hold many more entries
than leaf pages.

— Variable sized records and search keys mean different
nodes will contain different numbers of entries.

— Even with fixed length fields, multiple records with the
same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

¢ Many real systems are even sloppier than this ---
only reclaim space when a page is completely

empty.

Summary

¢ Tree-structured indexes are ideal for range-
searches, also good for equality searches.

¢ ISAM is a static structure.
— Only leaf pages modified; overflow pages needed.
— Overflow chains can degrade performance unless size

of data set and data distribution stay constant.

¢ B+ tree is a dynamic structure.
— Inserts/deletes leave tree height-balanced; log ¢ N cost.
— High fanout (F) means depth rarely more than 3 or 4.
— Almost always better than maintaining a sorted file.




Summary (Contd.)

— Typically, 67% occupancy on average.

— Usually preferable to ISAM, modulo /ocking

considerations; adjusts to growth gracefully.

— If data entries are data records, splits can change rids!
¢ Key compression increases fanout, reduces height.
¢ Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.
Most widely used index in database management
systems because of its versatility. One of the
most optimized components of a DBMS.




