
1

File Organizations and Indexing

Lecture 4

R&G Chapter 8
"If you don't find it in the index, look very

carefully through the entire catalogue."

-- Sears, Roebuck, and Co.,
Consumer's Guide, 1897

Context

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Alternative File Organizations

Many alternatives exist, each good for
some situations, and not so good in
others:

– Heap files: Suitable when typical access is
a file scan retrieving all records.

– Sorted Files: Best for retrieval in search
key order, or only a `range’ of records is
needed.

– Clustered Files (with Indexes): Coming
soon…

Cost Model for Analysis

We ignore CPU costs, for simplicity:
– B: The number of data blocks

– R: Number of records per block

– D: (Average) time to read or write disk block

– Measuring number of block I/O’s ignores gains of
pre-fetching and sequential access; thus, even I/O
cost is only loosely approximated.

– Average-case analysis; based on several simplistic
assumptions.

 Good enough to show the overall trends!

Some Assumptions in the Analysis

• Single record insert and delete.

• Equality selection - exactly one match
(what if more or less???).

• Heap Files:

– Insert always appends to end of file.

• Sorted Files:

– Files compacted after deletions.

– Selections on search key.

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

Insert

Range

Search

Equality

Search

Scan all

records

Clustered FileSorted FileHeap File

2

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

Insert

Range

Search

Equality

Search

BDBDScan all

records

Clustered FileSorted FileHeap File

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

Insert

Range

Search

(log2 B) * D0.5 BDEquality

Search

BDBDScan all

records

Clustered FileSorted FileHeap File

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

Insert

[(log2 B) +

 #match pg]*D

BDRange

Search

(log2 B) * D0.5 BDEquality

Search

BDBDScan all

records

Clustered FileSorted FileHeap File

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Delete

((log2B)+B)D

(because R,W 0.5)

2DInsert

[(log2 B) +

 #match pg]*D

BDRange

Search

(log2 B) * D0.5 BDEquality
Search

BDBDScan all

records

Clustered FileSorted FileHeap File

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

((log2B)+B)D

(because R,W 0.5)

0.5BD + DDelete

((log2B)+B)D2DInsert

[(log2 B) +

 #match pg]*D

BDRange

Search

(log2 B) * D0.5 BDEquality
Search

BDBDScan all

records

Clustered FileSorted FileHeap File

Indexes

• Sometimes, we want to retrieve records by
specifying the values in one or more fields, e.g.,

– Find all students in the “CS” department

– Find all students with a gpa > 3

• An index on a file is a disk-based data structure that
speeds up selections on the search key fields for the
index.
– Any subset of the fields of a relation can be the search key

for an index on the relation.

– Search key is not the same as key (e.g. doesn’t have to be
unique ID).

• An index contains a collection of data entries, and
supports efficient retrieval of all records with a given
search key value k.

3

First Question to Ask About
Indexes

• What kinds of selections do they support?
– Selections of form field <op> constant

– Equality selections (op is =)

– Range selections (op is one of <, >, <=, >=, BETWEEN)

– More exotic selections:

• 2-dimensional ranges (“east of Berkeley and west of Truckee
and North of Fresno and South of Eureka”)

– Or n-dimensional

• 2-dimensional distances (“within 2 miles of Soda Hall”)

– Or n-dimensional

• Ranking queries (“10 restaurants closest to Berkeley”)

• Regular expression matches, genome string matches, etc.

• One common n-dimensional index: R-tree

– Supported in Oracle and Informix

– See http://gist.cs.berkeley.edu for research on this topic

Index Breakdown

• What selections does the index support

• Representation of data entries in index
– i.e., what kind of info is the index actually

storing?

– 3 alternatives here

• Clustered vs. Unclustered Indexes

• Single Key vs. Composite Indexes

• Tree-based, hash-based, other

Alternatives for Data Entry k* in Index

• Three alternatives:
• Actual data record (with key value k)

• <k, rid of matching data record>

• <k, list of rids of matching data records>

• Choice is orthogonal to the indexing technique.
– Examples of indexing techniques: B+ trees, hash-

based structures, R trees, …

– Typically, index contains auxiliary information that
directs searches to the desired data entries

• Can have multiple (different) indexes per file.
– E.g. file sorted by age, with a hash index on salary

and a B+tree index on name.

Alternatives for Data Entries (Contd.)

• Alternative 1:
 Actual data record (with key
value k)
– If this is used, index structure is a file

organization for data records (like Heap
files or sorted files).

– At most one index on a given collection of
data records can use Alternative 1.

– This alternative saves pointer lookups but
can be expensive to maintain with
insertions and deletions.

Alternatives for Data Entries (Contd.)

Alternative 2

<k, rid of matching data record>
and Alternative 3

<k, list of rids of matching data records>

– Easier to maintain than Alt 1.

– If more than one index is required on a given file, at most
one index can use Alternative 1; rest must use Alternatives 2
or 3.

– Alternative 3 more compact than Alternative 2, but leads to
variable sized data entries even if search keys are of fixed
length.

– Even worse, for large rid lists the data entry would have to
span multiple blocks!

Index Classification

• Clustered vs. unclustered: If order of data
records is the same as, or `close to’, order of
index data entries, then called clustered index.
– A file can be clustered on at most one search key.

– Cost of retrieving data records through index varies
greatly based on whether index is clustered or not!

– Alternative 1 implies clustered, but not vice-versa.

4

Clustered vs. Unclustered Index

• Suppose that Alternative (2) is used for data entries, and that
the data records are stored in a Heap file.
– To build clustered index, first sort the Heap file (with some free space

on each block for future inserts).

– Overflow blocks may be needed for inserts. (Thus, order of data recs
is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED
UNCLUSTERED

Unclustered vs. Clustered Indexes

• What are the tradeoffs????

• Clustered Pros
– Efficient for range searches

– May be able to do some types of
compression

– Possible locality benefits (related data?)

– ???

• Clustered Cons
– Expensive to maintain (on the fly or sloppy

with reorganization)

Cost of
Operations

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

((logF 1.5B)+1)

* D

((log2B)+B)D

(because R,W 0.5)

0.5BD + DDelete

((logF 1.5B)+1)

* D

((log2B)+B)D2DInsert

[(logF 1.5B) +

 #match pg]*D

[(log2 B) +

 #match pg]*D

BDRange

Search

(logF 1.5B) * D(log2 B) * D0.5 BDEquality
Search

1.5 BDBDBDScan all

records

Clustered FileSorted FileHeap File

Composite Search Keys

• Search on a combination of
fields.
– Equality query: Every field value

is equal to a constant value.
E.g. wrt <age,sal> index:

• age=20 and sal =75

– Range query: Some field value
is not a constant. E.g.:

• age > 20; or age=20 and sal >
10

• Data entries in index sorted
by search key to support
range queries.
– Lexicographic order

– Like the dictionary, but on
fields, not letters!

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

Summary

• File Layer manages access to records in pages.
– Record and page formats depend on fixed vs. variable-

length.

– Free space management an important issue.

– Slotted page format supports variable length records and
allows records to move on page.

• Many alternative file organizations exist, each
appropriate in some situation.

• If selection queries are frequent, sorting the file or
building an index is important.
– Hash-based indexes only good for equality search.

– Sorted files and tree-based indexes best for range search;
also good for equality search. (Files rarely kept sorted in
practice; B+ tree index is better.)

• Index is a collection of data entries plus a way to
quickly find entries with given key values.

Summary (Contd.)

• Data entries in index can be actual data records, <key, rid>
pairs, or <key, rid-list> pairs.

– Choice orthogonal to indexing structure (i.e., tree, hash, etc.).

• Usually have several indexes on a given file of data records, each
with a different search key.

• Indexes can be classified as clustered vs. unclustered

• Differences have important consequences for utility/performance.

• Catalog relations store information about relations, indexes and
views.

