
1

Storing Data: Disks and Files
Lecture 3

(R&G Chapter 9)

“Yea, from the table of my memory
I’ll wipe away all trivial fond records.”

-- Shakespeare, Hamlet

Review

• Aren’t Databases Great?

• Relational model
• SQL

A few slides from the end of
lecture 1

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery

Structure of a DBMS

• A typical RDBMS has a
layered architecture.

• The figure does not show
the concurrency control
and recovery components.

• Each system has its own
variations.

• The book shows a
somewhat more detailed
version.

• You will see the “real
deal” in PostgreSQL.
– It’s a pretty full-featured

example

The Access Method

Buffer Management

Disk Space Management

DB

OS

The Query

Search String Modifier

Simple
DBMS}

Ranking Engine

FYI: A text search engine

• Arguably less “system” than DBMS
– Uses OS files for storage
– Just one access method
– One hardwired query

• regardless of search string

• Typically no concurrency or recovery
management
– Read-mostly
– Batch-loaded, periodically
– No updates to recover
– OS a reasonable choice

• Smarts: text tricks
– Search string modifier (e.g.

“stemming” and synonyms)
– Ranking Engine (sorting the output,

e.g. by word or document popularity)
– no clear semantics: WYGIWIGY

Disks, Memory, and Files

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

The BIG picture…

2

Disks and Files

• DBMS stores information on disks.
– In an electronic world, disks are a mechanical

anachronism!

• This has major implications for DBMS design!
– READ: transfer data from disk to main memory (RAM).
– WRITE: transfer data from RAM to disk.
– Both are high-cost operations, relative to in-memory

operations, so must be planned carefully!

Why Not Store Everything in Main Memory?

• Costs too much. For ~$1000,
PCConnection will sell you either
~10GB of RAM or 1.5 TB of disk today.

• Main memory is volatile. We want data
to be saved between runs. (Obviously!)

The Storage Hierarchy

Source: Operating Systems Concepts 5th Edition

–Main memory (RAM) for
currently used data.

–Disk for the main database
(secondary storage).

–Tapes for archiving older
versions of the data
(tertiary storage).

Smaller, Faster

Bigger, Slower

Jim Gray’s Storage Latency Analogy:
How Far Away is the Data?

Registers
On Chip Cache
On Board Cache

Memory

Disk

1
2

10

100

Tape /Optical
 Robot

109

106

Sacramento

This Lecture Hall
This Room

My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years
Andromeda

Disks

• Secondary storage device of choice.
• Main advantage over tapes: random access

vs. sequential.
• Data is stored and retrieved in units called

disk blocks or pages.
• Unlike RAM, time to retrieve a disk block

varies depending upon location on disk.
– Therefore, relative placement of blocks on disk

has major impact on DBMS performance!

Components of a Disk

Platters

 The platters spin (say, 120 rps).

Spindle

 The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a cylinder
(imaginary!).

Disk head

Arm movement

Arm assembly

Only one head
reads/writes at any
one time.

Tracks

Sector

 Block size is a multiple
of sector size (which is fixed).

3

Accessing a Disk Page

• Time to access (read/write) a disk block:
– seek time (moving arms to position disk head on track)
– rotational delay (waiting for block to rotate under head)
– transfer time (actually moving data to/from disk surface)

• Seek time and rotational delay dominate.
– Seek time varies between about 0.3 and 10msec
– Rotational delay varies from 0 to 4msec
– Transfer rate around .08msec per 8K block

• Key to lower I/O cost: reduce seek/rotation
delays! Hardware vs. software solutions?

Arranging Pages on Disk

• `Next’ block concept:
– blocks on same track, followed by
– blocks on same cylinder, followed by
– blocks on adjacent cylinder

• Blocks in a file should be arranged
sequentially on disk (by `next’), to minimize
seek and rotational delay.

• For a sequential scan, pre-fetching several
pages at a time is a big win!

Disk Space Management

• Lowest layer of DBMS software manages space
on disk (using OS file system or not?).

• Higher levels call upon this layer to:
– allocate/de-allocate a page
– read/write a page

• Best if a request for a sequence of pages is
satisfied by pages stored sequentially on disk!
– Responsibility of disk space manager.
– Higher levels don’t know how this is done, or how

free space is managed.
– Though they may assume sequential access for files!

• Hence disk space manager should do a decent job.

Context

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Buffer Management in a DBMS

• Data must be in RAM for DBMS to operate on it!
• Buffer Mgr hides the fact that not all data is in

RAM

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

When a Page is Requested ...

• Buffer pool information table contains:
<frame#, pageid, pin_count, dirty>

• If requested page is not in pool:
– Choose a frame for replacement.

Only “un-pinned” pages are candidates!
– If frame is “dirty”, write it to disk
– Read requested page into chosen frame

• Pin the page and return its address.

 If requests can be predicted (e.g., sequential scans)
 pages can be pre-fetched several pages at a time!

4

More on Buffer Management

• Requestor of page must eventually unpin it,
and indicate whether page has been
modified:
– dirty bit is used for this.

• Page in pool may be requested many times,
– a pin count is used.
– To pin a page, pin_count++
– A page is a candidate for replacement iff pin

count == 0 (“unpinned”)
• CC & recovery may entail additional I/O

when a frame is chosen for replacement.
– Write-Ahead Log protocol; more later!

Buffer Replacement Policy

• Frame is chosen for replacement by a
replacement policy:
– Least-recently-used (LRU), MRU, Clock,

etc.

• Policy can have big impact on # of
I/O’s; depends on the access pattern.

LRU Replacement Policy

• Least Recently Used (LRU)
– for each page in buffer pool, keep track of time when

last unpinned
– replace the frame which has the oldest (earliest) time
– very common policy: intuitive and simple

• Works well for repeated accesses to popular pages

• Problems?
• Problem: Sequential flooding

– LRU + repeated sequential scans.
– # buffer frames < # pages in file means each page

request causes an I/O.
– Idea: MRU better in this scenario? We’ll see in HW1!

“Clock” Replacement Policy

• An approximation of LRU
• Arrange frames into a cycle, store one reference bit

per frame
– Can think of this as the 2nd chance bit

• When pin count reduces to 0, turn on ref. bit
• When replacement necessary

do for each page in cycle {
if (pincount == 0 && ref bit is on)

turn off ref bit;
else if (pincount == 0 && ref bit is off)

choose this page for replacement;
} until a page is chosen; Questions:

How like LRU?
Problems?

A(1)

B(p)

C(1)

D(1)

DBMS vs. OS File System

 OS does disk space & buffer mgmt: why not
let OS manage these tasks?

• Some limitations, e.g., files can’t span disks.
• Buffer management in DBMS requires ability to:

– pin a page in buffer pool, force a page to disk &
order writes (important for implementing CC &
recovery)

– adjust replacement policy, and pre-fetch pages
based on access patterns in typical DB operations.

Context

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

5

Files of Records

• Blocks interface for I/O, but…
• Higher levels of DBMS operate on records,

and files of records.
• FILE: A collection of pages, each containing

a collection of records. Must support:
– insert/delete/modify record
– fetch a particular record (specified using record id)
– scan all records (possibly with some conditions on

the records to be retrieved)

Unordered (Heap) Files

• Simplest file structure contains records in no
particular order.

• As file grows and shrinks, disk pages are
allocated and de-allocated.

• To support record level operations, we must:
– keep track of the pages in a file
– keep track of free space on pages
– keep track of the records on a page

• There are many alternatives for keeping track of
this.
– We’ll consider 2

Heap File Implemented as a List

• The header page id and Heap file name
must be stored someplace.
– Database “catalog”

• Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Heap File Using a Page Directory

• The entry for a page can include the number
of free bytes on the page.

• The directory is a collection of pages; linked
list implementation is just one alternative.
– Much smaller than linked list of all HF pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Indexes (a sneak preview)

• A Heap file allows us to retrieve records:
– by specifying the rid, or
– by scanning all records sequentially

• Sometimes, we want to retrieve records by
specifying the values in one or more fields,
e.g.,
– Find all students in the “CS” department
– Find all students with a gpa > 3

• Indexes are file structures that enable us to
answer such value-based queries efficiently.

Record Formats: Fixed Length

• Information about field types same for all
records in a file; stored in system catalogs.

• Finding i’th field done via arithmetic.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

6

Record Formats: Variable Length

• Two alternative formats (# fields is fixed):

 Second offers direct access to i’th field, efficient storage
of nulls (special don’t know value); small directory overhead.

$ $ $ $

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

Page Formats: Fixed Length Records

Record id = <page id, slot #>. In first
alternative, moving records for free space
management changes rid; may not be acceptable.

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1
PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

number
of records

number
of slots

Page Formats: Variable Length
Records

Can move records on page without changing
rid; so, attractive for fixed-length records
too.

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots

System Catalogs

• For each relation:
– name, file location, file structure (e.g., Heap file)
– attribute name and type, for each attribute
– index name, for each index
– integrity constraints

• For each index:
– structure (e.g., B+ tree) and search key fields

• For each view:
– view name and definition

• Plus statistics, authorization, buffer pool size, etc.

 Catalogs are themselves stored as relations!

Attr_Cat(attr_name, rel_name, type, position)

attr_name rel_name type position
attr_name Attribute_Cat string 1
rel_name Attribute_Cat string 2
type Attribute_Cat string 3
position Attribute_Cat integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

Summary

• Disks provide cheap, non-volatile storage.
– Random access, but cost depends on location of page

on disk; important to arrange data sequentially to
minimize seek and rotation delays.

• Buffer manager brings pages into RAM.
– Page stays in RAM until released by requestor.
– Written to disk when frame chosen for replacement

(which is sometime after requestor releases the page).
– Choice of frame to replace based on replacement policy.
– Tries to pre-fetch several pages at a time.

7

Summary (Contd.)

• DBMS vs. OS File Support
– DBMS needs features not found in many OS’s,

e.g., forcing a page to disk, controlling the order
of page writes to disk, files spanning disks, ability
to control pre-fetching and page replacement
policy based on predictable access patterns, etc.

• Variable length record format with field offset
directory offers support for direct access to
i’th field and null values.

• Slotted page format supports variable length
records and allows records to move on page.

Summary (Contd.)

• File layer keeps track of pages in a file, and
supports abstraction of a collection of records.
– Pages with free space identified using linked list or

directory structure (similar to how pages in file are
kept track of).

• Indexes support efficient retrieval of records
based on the values in some fields.

• Catalog relations store information about
relations, indexes and views. (Information that
is common to all records in a given collection.)

