Storing Data: Disks and Files
Lecture 3
(R&G Chapter 9)

“Yea, from the table of my memory
I'll wipe away all trivial fond records.”
-- Shakespeare, Hamlet

ﬁ Review

¢ Aren’t Databases Great?

e Relational model
* SQL

A few slides from the end of
lecture 1

These layers
must consider
concurrency
control and

ﬁ Structure of a DBMS

¢ A typical RDBMS has a
layered architecture. recovery

¢ The figure does not show Query Optimization
the concurrency control and Execution
and recovery components.

¢ Each system has its own
variations.

¢ The book shows a

somewhat more detailed -
version. Disk Space Management

Relational Operators

Files and Access Methods

Buffer Management

¢ You will see the “real
deal” in PostgreSQL.

- It's a pretty full-featured DB
example

Bl FYI: A text search engine

* Arguably less “system” than DBMS
— Uses OS files for storage

— Just one access method

— One hardwired query Search String Modifier

« regardless of search string

« Typically no concurrency or recovery Ranking Engine

management The Query

— Read-mostly

~ Batch-loaded, periodically The Access Method

— No updates to recover

S
— 05 a reasonable choice Buffer I\’Iaﬂagemenp

¢ Smarts: text tricks
— Search string modifier (e.g.

Disk Space Management

“stemming” and synonyms)
— Ranking Engine (sorting the output,
e.g. by word or document popularity)
~ no clear semantics: WYGIWIGY DB

Simple
DBMS

ﬁ Disks, Memory, and Files

The BIG picture...

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management
T

L

Disks and Files

* DBMS stores information on disks.
— In an electronic world, disks are a mechanical
anachronism!
¢ This has major implications for DBMS design!
— READ: transfer data from disk to main memory (RAM).
— WRITE: transfer data from RAM to disk.
— Both are high-cost operations, relative to in-memory
operations, so must be planned carefully!

Why Not Store Everything in Main Memory?

e Costs too much. For ~$1000,
PCConnection will sell you either
~10GB of RAM or 1.5 TB of disk today.
e Main memory is volatile. We want data
to be saved between runs. (Obviously!)

The Storage Hierarchy

Smaller, Faster
—Main memory (RAM) for
currently used data.
-Disk for the main database
(secondary storage).
—Tapes for archiving older

versions of the data i
[l]
[
Bigger, Slower

(tertiary storage).
Source: Operating Systems Concepts 5th Edition

ﬁ Jim Gray’s Storage Latency Analogy:

How Far Away is the Data?

Andromeda
10% Tape /Optical : 2,000 Years
Robot
106 Disk Pluto 2 Years

100 Memory
10 OnBoard Cache

2 On Chip Cache i
1 Registers g%My Head 1 min

Disks

* Secondary storage device of choice.

¢ Main advantage over tapes: random access
vs. sequential.

 Data is stored and retrieved in units called

disk blocks or pages.

Unlike RAM, time to retrieve a disk block

varies depending upon location on disk.

— Therefore, relative placement of blocks on disk
has major impact on DBMS performance!

Components of a Disk

Disk head
The platters spin (say, 120 rps).
The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a cylinder
(imaginary!).

Sector

)

Arm movement

Platters

Only one head
reads/writes at any
one time.

. . . Arm assembly
« Block size is a multiple

of sector size (which is fixed).

W@l Accessing a Disk Page

» Time to access (read/write) a disk block:
— seek time (moving arms to position disk head on track)
— rotational delay (waiting for block to rotate under head)
— transfer time (actually moving data to/from disk surface)
¢ Seek time and rotational delay dominate.
— Seek time varies between about 0.3 and 10msec
— Rotational delay varies from 0 to 4msec
— Transfer rate around .08msec per 8K block
¢ Key to lower I/0O cost: reduce seek/rotation
delays! Hardware vs. software solutions?

@l Arranging Pages on Disk

o " Next' block concept:

— blocks on same track, followed by

— blocks on same cylinder, followed by

— blocks on adjacent cylinder

Blocks in a file should be arranged
sequentially on disk (by *next’), to minimize
seek and rotational delay.

For a sequential scan, pre-fetching several
pages at a time is a big win!

@l Disk Space Management

¢ Lowest layer of DBMS software manages space
on disk (using OS file system or not?).
¢ Higher levels call upon this layer to:
— allocate/de-allocate a page
— read/write a page
» Best if a request for a sequence of pages is
satisfied by pages stored sequentially on disk!
— Responsibility of disk space manager.
— Higher levels don’t know how this is done, or how
free space is managed.
— Though they may assume sequential access for files!
* Hence disk space manager should do a decent job.

@l Context

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

=

@l Buffer Management in a DBMS

Page Requests from Higher Levels
8 8

BUFFER POOL ¢

disk page

free frame

MAIN MEMORY $
DISK choice of frame dictated
m by replacement policy
e Data must be in RAM for DBMS to operate on it!

o Buffer Mgr hides the fact that not all data is in
RAM

Bl When a Page is Requested ...

» Buffer pool information table contains:
<frame#, pageid, pin_count, dirty>

« If requested page is not in pool:

— Choose a frame for replacement.
Only “"un-pinned” pages are candidates!

— If frame is “dirty”, write it to disk
— Read requested page into chosen frame

¢ Pinthe page and return its address.
w If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

@l VMore on Buffer Management

* Requestor of page must eventually unpin it,
and indicate whether page has been
modified:

— dirty bit is used for this.

Page in pool may be requested many times,
— a pin countis used.

— To pin a page, pin_count++

— A page is a candidate for replacement iff pin

count == 0 ("unpinned”)

CC & recovery may entail additional I/O
when a frame is chosen for replacement.

— Write-Ahead Log protocol; more later!

@l Buffer Replacement Policy

¢ Frame is chosen for replacement by a
replacement policy:

— Least-recently-used (LRU), MRU, Clock,
etc.

e Policy can have big impact on # of
1/0's; depends on the access pattern.

Bl LRU Replacement Policy

e [east Recently Used (LRU)

— for each page in buffer pool, keep track of time when
last unpinned

— replace the frame which has the oldest (earliest) time
— very common policy: intuitive and simple
* Works well for repeated accesses to popular pages
¢ Problems?
e Problem: Sequential flooding
— LRU + repeated sequential scans.

— # buffer frames < # pages in file means each page
request causes an I/0.

— Idea: MRU better in this scenario? We'll see in HW1!

@l 'Clock” Replacement Policy

A

D(1) B(p)

¢ An approximation of LRU cQ)
¢ Arrange frames into a cycle, store one reference bit
per frame
— Can think of this as the 2nd chance bit
¢ When pin count reduces to 0, turn on ref. bit
¢ When replacement necessary
do for each page in cycle {
if (pincount == 0 && ref bit is on)
turn off ref bit;
else if (pincount == 0 && ref bit is off)

choose this page for replaceme b BT
} until a page is chosen; uestions:

How like LRU?
Problems?

@l DBMS vs. OS File System

OS does disk space & buffer mgmt: why not
let OS manage these tasks?

¢ Some limitations, e.g., files can't span disks.
¢ Buffer management in DBMS requires ability to:
— pin a page in buffer pool, force a page to disk &
order writes (important for implementing CC &
recovery)
— adjust replacement policy, and pre-fetch pages
based on access patterns in typical DB operations.

@l Context

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management
T

S

ﬁ Files of Records

» Blocks interface for I/0, but...
 Higher levels of DBMS operate on records,
and files of records.
e FILE: A collection of pages, each containing
a collection of records. Must support:
— insert/delete/modify record
— fetch a particular record (specified using record id)

— scan all records (possibly with some conditions on
the records to be retrieved)

@l Unordered (Heap) Files

¢ Simplest file structure contains records in no
particular order.

o As file grows and shrinks, disk pages are
allocated and de-allocated.

¢ To support record level operations, we must:
— keep track of the pages in a file
— keep track of free space on pages
— keep track of the records on a page

» There are many alternatives for keeping track of
this.
— We'll consider 2

@l Heap File Implemented as a List

N N X
> Data Data Data Full Pages
e Page Page Page
Header / N
Page N NN TN
\\77 l?aa;c‘ 1?;;; 1?;;; Pages with
Free Space

¢ The header page id and Heap file name
must be stored someplace.
— Database “catalog”

e Each page contains 2 " pointers’ plus data.

ﬂeap File Using a Page Directory

Data
Header Pagel
Pa;.,e
>
Data
-
T
DIRECTORY Page N
* The entry for a page can include the number

of free bytes on the page.

¢ The directory is a collection of pages; linked
list implementation is just one alternative.
— Much smaller than linked list of all HF pages!

Bl [ndexes (a sneak preview)

¢ A Heap file allows us to retrieve records:

— by specifying the rid, or

— by scanning all records sequentially
Sometimes, we want to retrieve records by
specifying the values in one or more fields,
e.g.,

— Find all students in the "CS” department

— Find all students with a gpa > 3

Indexes are file structures that enable us to
answer such value-based queries efficiently.

@l Record Formats: Fixed Length

Fl F2 F3 F4
<—Ll—>ﬂ L2 L3 ‘ L4 ‘

Base address (B) Address = B+L1+L2

« Information about field types same for all
records in a file; stored in system catalogs.

* Finding i'th field done via arithmetic.

Record Formats: Variable Length

* Two alternative formats (# fields is fixed):

F1 F2 F3 F4
Lo sl sl s s
Fields Delimited by Special Symbols

el |

Array of Field Offsets

w Second offers direct access to i'th field, efficient storage
of nulls (special don’t know value); small directory overhead.

Page Formats: Fixed Length Records

Slot 1
Slot 2

SlotN

\ ™~
number number
PACKED of records UNPACKED, BITMAP of slots

wRecord id = <page id, slot #>. In first
alternative, moving records for free space
management changes rid; may not be acceptable.

=— Page Formats: Variable Length

Records
Rid = (i,N
Page i
Rid = (i,2
<* "
Ve
a—
[| [1o L2 [N~ Jroimer
N . to start

2 },, #slots free

SLOT DIRECTORY ’ space
wCan move records on page without changing
rid; so, attractive for fixed-length records

too.

System Catalogs

¢ For each relation:

— name, file location, file structure (e.g., Heap file)
— attribute name and type, for each attribute

— index name, for each index

— integrity constraints

e For each index:

— structure (e.g., B+ tree) and search key fields

e For each view:

— view name and definition

¢ Plus statistics, authorization, buffer pool size, etc.

w Catalogs are themselves stored as relations!

ittr_Cat(attr_name, rel_name, type, position)

attr_ name |rel name type position|
attr_name |Attribute_Cat |string 1
rel_name |Attribute_Cat |string 2
type Attribute_Cat |string 3
position Attribute_Cat |integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

Summary

 Disks provide cheap, non-volatile storage.

— Random access, but cost depends on location of page
on disk; important to arrange data sequentially to
minimize seek and rotation delays.

» Buffer manager brings pages into RAM.

— Page stays in RAM until released by requestor.

— Written to disk when frame chosen for replacement
(which is sometime after requestor releases the page).

— Choice of frame to replace based on replacement policy.
— Tries to pre-fetch several pages at a time.

Summary (Contd.)

e DBMS vs. OS File Support
— DBMS needs features not found in many OS's,
e.g., forcing a page to disk, controlling the order
of page writes to disk, files spanning disks, ability
to control pre-fetching and page replacement
policy based on predictable access patterns, etc.
 Variable length record format with field offset
directory offers support for direct access to
i'th field and null values.

* Slotted page format supports variable length
records and allows records to move on page.

Summary (Contd.)

« File layer keeps track of pages in a file, and
supports abstraction of a collection of records.
— Pages with free space identified using linked list or
directory structure (similar to how pages in file are
kept track of).
¢ Indexes support efficient retrieval of records
based on the values in some fields.
» Catalog relations store information about
relations, indexes and views. (Information that
is common to all records in a given collection.)

