“We are drowning in data but
starved for knowledge”

John Naisbitt

Systems

g oo [y
(Dss) >

— Exact Answer
6B/TB Long Response Times!

* Exact answers NOT always required

- DSS applications usually exploratory: early feedback to
help identify “interesting" regions

- Aggregate gueries: precision o “last decimal” not
needed

+ e.g., "What percentage of the US sales are in NJ?"

* Primarily for Aggregate queries

+ Goal is to quickly report the leading digits of answers gﬁ;;so'ﬁ? <+———— SQL Query x _
- Inseconds instead of minutes or hours Systems
Most ful if i N (bss) — EXACt ANSWeEr m
- 0st usetul IT can provide error guaranfees .
P 9 68/TB Long Response Times!
E.g., Average salary l
(with 95% confidence) in 10 seconds 4+————— "“Transformed” Query
Vvs. in 10 minutes —p> Approximate Answer
KB/MB FASTH
* Achieved by answering the query based on compact synopses of the
data * How do you build effective data synopses???
+ Speed-up obtained because synopses are orders of magnitude smaller
than the original data
* Idea: A small random sample S of the data often well-represents all Method 90% Confidence Interval (x) Guarantees?
the data Central Limit Theorem 165 * o(5) / sqri(IS]) 15~
- For a fast approx answer, apply the query fo S & “scale” the result Fioettang 125 (MAXRTN) 7 597 151) s
- E‘g" Rais {0'1)' Sis a20% sumple Chebyshev (known o(R)) 3.16 * o(R) / sqrt(IS]) always
* -
select count(*) from R where R.a=0 G) 0 . 0

select 5 * count(*) from S where S.a=0
Est. count = 5*2 =10, Exact count = 10
For expressions involving count, sum, avg: the estimator
is unbiased, i.e., the expected value of the answer is the actual answer,
even for (most) queries with predicates!

+ Leverage extensive literature on for sampling
Actual answer is within the interval [a,b] with a given probability
E.g., 54,000 + 600 with prob = 90%

* If predicates, S above is subset of sample that satisfies the predicate

* Quality of the estimate depends only on the variance in R & |S| after the
predicate: So 10K sample may suffice for 10B row relation!

- Advantage of larger samples: can handle more selective predicates

« Sampling disk-resident data is slow
- Row-level sampling has high I/0 cost:
+ must bring in entire disk block to get the row
- Block-level sampling: rows may be highly correlated
- Random access pattern, possibly via an index

- Need to account for the variable humber of rows in a page,
children in an index node, efc.

- Alternatives
- Random physical clustering: destroys “natural” clustering
- Precomputed samples: must incrementally maintain (at specified size)

« Fast to use: packed in disk blocks, can sequentially scan, can store
as relation and leverage full DBMS query support, can store in
main memory

« Best choice for incremental maintenance

- Low overheads, no random data access

« Reservoir Sampling [Vit85]: Maintains a sample S of a fixed-size M

Add each new item to S with probability M/N, where N is the current
number of data items

If add an item, evict a random item from S

Instead of flipping a coin for each item, determine the number of
items to skip before the next to be added to S

« Partition attribute value(s) domain into a set of buckets
« Issues:

- How to partition

- What to store for each bucket

- How to estimate an answer using the histogram

* Long history of use for selectivity estimation within a
query optimizer

* Recently explored as a tool for fast approximate query
processing

Count in
bucket

* Number of buckets B <« domain size

456789101112 1920 Domain values

« Each bucket just stores a fotal count
- Distributed uniformly across values in the bucket

« Partition criteria
- Equi-width: equal number of domain values per bucket (badl!)
- Equi-depth/height: equal count (“mass”) per bucket

- V-Optimal: minimize fotal variance of value counts in buckets

* Answering queries from 1-D histograms (in general):

- (Implicitly) map the histogram back to an approximate relation,
& apply the query to the approximate relation

« Inside each bucket: Uniformity Assumption

- Continuous value mapping

Count spread
evenly among
456789101112 19 20 bucket values

—

- Uniform spread mapping

Need number
I I of distinct in
each bucket

456789 1112 19 20

3 2 12 3 1

N : mathematical tool for hierarchical decomposition of
functions/signals
. . simplest wavelet basis, easy to understand and implement
- Recursive pairwise averaging and differencing at different
resolutions
Resolution Averages Detail Coefficients
3 D=1[2,2023,54,4]
2 [2, 1, 4 4] [0, -1,-1,0]
1 [15, 4] [0.5, 0]
0 < [2.75] [-1.25]

N /A2

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0,0, -1, -1, 0]

Hierarchical decomposition structure (a.ka. Error Tree)

- Conceptual tool to “visualize" coefficient supports & data reconstruction
Reconstruct data values d(i)

- d() :Z(+/-1) * (coefficient on path)

Range sum calculation d(l:h)

- d(I:h) = simple linear combination of
coefficients on paths to |, h

Only O(logN) terms

Original data

« Compute Haar wavelet decomposition of D
« Coefficient thresholding: only B«|D| coefficients can be kept
- B is determined by the available synopsis space

- Approximate query engine can do all its processing over such compact
coefficient synopses (joins, aggregates, selections, efc.)

« Conventional thresholding: Take B largest coefficients in absolute
normalized value
- Normalized Haar basis: divide coefficients at resolution j by «/2T
- All other coefficients are ignored (assumed to be zero)

- Provably optimal in terms of the overall Sum-Squared (L2) Error

Approximate the joint data distribution of
multiple attributes

- Selectivity estimation for
queries with multiple predicates ° e

* Approximating general relations .

Attribute-Value Independence (AVI)
assumption

- sel(p(A1) & p(A2) & ...) = sel(p(A1)) * sel(p(A2) * ...
- Simple -- one-dimensional marginals suffice
- almost always inaccurate, gross errors in practice

15

* Use small number of multi-dimensional buckets to directly approximate
the joint data distribution

« Uniform spread & frequency approximation within buckets
- n(i) = no. of distinct values along Ai, F = total bucket frequency

- approximate data points on a n(l)*n(Z)* . uniform grid, each

with frequency F/ (n(1)*n(2)*..

Approximate Distribution

Actual Distribution (ONE BUCKET)

=

+ Sampling operators ans 1-D histograms are available in
most commercial DBMSs

- Oracle, DB2, SQL Server,...

- Used internally but also exposed to user (e.g., store
“sample view")

- SQL Server has support for 2-D histograms!

* The next step: Synopses for XMLI?!

- How do you effectively summarize a graph structure
for queries like “//a/}é[d]/*/c" 2?

. Trfrzdifional DBMS - data stored in finite, persistent data
sets

e Data Streams - distributed, continuous, unbounded,
rapid, time varying, noisy, . ..

* Data-Stream Management - variety of modern
applications

- Network monitoring and traffic engineering
- Telecom call-detail records

- Network security

- Financial applications

- Sensor networks

- Web logs and clickstreams

Network Operations

SNMP/RMON, Sontor (NOC)

NetFlow records

Example NetFlow IP Session Data

Destination | Duration | Bytes |Protocol
0002 | 16237 2 20K | hup.
18671 12403 16 2K | hop
13943 | 11682 Is 206 | hp
15220 | 1721 I Gk | hep
12438 | 14874 2 sk | hop
0513 | 13001 2 100K | fp
1106 | 10345 » 30K | fp
712 | 16558 18 sk |y

—+0SPF

Converged IP/MPLS
Network

Enterprise
Networks

+ FR, ATM, IP VPN

PSTN

DSL/Cable * Broadband + Voice over IP
Networks —Internet Access

* SNMP/RMON/NetFlow data records arrive 24x7 from different parts
of the network
« Truly massive streams arriving at rapid rates
- ATA&T collects 600-800 GigaBytes of NetFlow data each day!

« Typically shipped to a back-end data warehouse (off site) for off-line
analysis

Back-end Data Warel

What are the top (most frequent) 1000 (source,
dest) pairs seen by R1 over the last month?
Off-line analysis - Data
access is slow, expensive e How many distinct (source, dest) pairs have
been seen by both Rl and R2 but not R3?

Set-Expression Query)|

Peer

SELECT COUNT (R1.source, R1.dest)
FROM R1, R2
Enferprise WHERE R1.source = R2.source

Networks psTN

DSL/Cable SQL Join Query

Networks

« Need ability to process/analyze network-data streams in real-time
- Asrecords stream in: look at records only once in arrival order!
- Within resource (CPU, memory) limitations of the NOC
« Critical to important NM tasks
- Detect and react to Fraud, Denial-of-Service attacks, SLA violations
- Real-time traffic engineering to improve load-balancing and utilization

Stream Synopses
(6Bs/TBs) (in memory) (KBs)

Continuous Data Streams

R1
a
Stream

Approximate Answer

o b
a Et";?:‘ssmg with Error Guarantees
"Within 2% of exact
N e i answer with high
Query Q probability”

« Approximate answers often suffice, e.g., trend analysis, anomaly
detection

« Requirements for stream synopses

- Single Pass: Each record is examined at most once, in (fixed) arrival
oraer

- Small Space: Log or polylog in data stream size

- IRea/»ﬁrne: Per-record processing time (to maintain synopses) must be
ow 2

« Problem: Find the number of distinct values in a stream of values with
domain [O,... N

- Zeroth frequency moment Fo , LO (Hamming) stream norm

- Statistics: number of species or classes in a population

- Important for query optimizers

- Network monitoring: distinct destination IP addresses,
source/destination pairs, requested URLs, etc.

DaTasTream:|3 05301751037

« Example (N=64)
Number of distinct values: 5

* Hard problem for random sampling! [CCMNOO]

- Must sample almost the entire table to quar‘umee the estimate is
within a factor of 10 with probability >1/2, regardless of the
estimator used!

« Assume a hash function h(x) that maps incoming values x in [O,..., N-1]
uniformly across [0,..., 2"L-1], where L = O(logN)

+ Let Isb(y) denote the position of the least-significant 1 bit in the binary
representation of y

- A value x is mapped to Isb(h(x))

* Maintain Hash Sketch= BITMAP array of L bits, initialized to O
- For each incoming value x, set BITMAP[Isb(h(x))]=1

x =5 —>h(x) = 101100—> Isb(h(x)) = 2

1
+ By uniformity through h(x): Prob[BITMAP[k]=1]= Prob[10] = ST

- Assuming d distinct values: expect d/2 to map to BITMAP[O],
d/4 to map to BITMAP[1], ... BITMAP
[¢]

L-1
Lelofofofofo Jrfofrfofeft[rfefe]efe]1]

+ Let R = position of rightmost zero in BLTMAP
- Use as indicator of log(d)

+ [FM85] prove that E[R] = log(¢d) , where ¢ =.7735
- Estimate d = 2%/

- Average several iid instances (different hash functions) to reduce
estimator variance

« Input: A stream of N numbers/elements
* Output: The stream majority element (if one exists)
- eis amajority element if frequency(e)> N/2

* Q: How do you do this in small space??
- Hint: Use just fwo memory locations
= Hint++: Look at this as a "knockout tournament”

« Feeling adventurous?

- How do you do the same majority query over a stream of
insertions and deletions?

- Input: Streamof <e, +>=inserte , <e, ->=deletee
- Hint: Use alittle more memory...

+ Database/data-management research goes far beyond
the basics!

+ Extends from distributed systems to theory to
approximation algorithms to probability/statistics to ...

- Applications: data mining, sensornets, p2p, ...

- Just pick up a copy of recent SIGMOD/VLDB
proceedings

* More and more relevant in dealing with the ‘data tsunam:”

- Data is everywhere!l And, it's constantly growing in
volumel

» Exciting, relevant research!

*Tutorial slides on approximate query
processing and data streams

http://www2.berkeley.intel-research.net/~minos/tutorials.htm

