
1

Ranking Results in
IR Search

Review: Simple Relational Text Index

• Create and populate a table
InvertedFile(term string, docID

string)

• Build a B+-tree or Hash index
on InvertedFile.term
– Use something like “Alternative

3” index
• Keep lists at the bottom sorted by

docID
• Typically called a “postings list”

Term

Berkeley:
42
49
57
…

Boolean Search in SQL

SELECT IB.docID
 FROM InvertedFile IB, InvertedFile ID, InvertedFile IR
 WHERE IB.docID = ID.docID AND ID.docID = IR.docID
 AND IB.term = “Berkeley”
 AND ID.term = “Database”
 AND IR.term = “Research”
ORDER BY magic_rank()

• This time we wrote it as a join
– Last time wrote it as an INTERSECT

• Recall our query plan
– An indexscan on each table “instance” in FROM clause
– A merge-join of the 3 indexscans (ordered by docID)

• magic_rank() is the “secret sauce” in the search engines
– Will require rewriting this query somewhat…

“Berkeley Database Research”

Classical IR Ranking
• Abstraction: Vector space model

– We’ll think of every document as a “vector”
• Imagine there are 10,000 possible terms
• Each document (bag of words) can be represented as an array of 10,000 counts
• This array can be thought of as a point in 10,000-dimensional space

– Measure “distance” between two vectors: “similarity” of two documents
• A query is just a short document

– Rank all docs by their distance to the query “document”!
• What’s the right distance metric?

– Problem 1: two long docs seem more similar to each other than to short docs
• Solution: normalize each dimension by vector’s (Euclidean) length
• Now everything doc is a point on the unit sphere

– Now: the dot-product (sum of products) of two normalized vectors happens
to be cosine of the angle between them!

• (dj · dk)/(|dj||dk|) = cos(θ)

– BTW: for normalized vectors, cosine ranking is the same as ranking by
Euclidean distance (prove this to yourself for 2-d)

θ

TF × IDF

• Counting occurrences isn’t a good way to weight each term
– Want to favor repeated terms in this doc
– Want to favor unusual words in this doc

• TF × IDF (Term Frequency × Inverse Doc Frequency)
– For each doc d

• DocTermRank = #occurrences of t in d TF
 × log((total #docs)/(#docs with this term)) IDF

– Instead of using counts in the vector, use DocTermRank

• Let’s add some more to our schema
– TermInfo(term string, numDocs int) -- used to compute IDF

• This is a “materialized” view on the invertedFile table.
– What’s the SQL for the view?

– InvertedFile (term string, docID int64, DocTermRank float)
• Why not just store TF rather than DocTermRank?

What is the tf × idf
of a term that
occurs in all
of the docs?

SELECT docID,
 (<Berkeley-tfidf>*bTFIDF +
 <Database-tfidf>*dTFIDF +
 <Research-TFIDF>*rTFIDF>) AS magic_rank
 FROM BooleanResult
ORDER BY magic_rank;

In SQL Again…

CREATE VIEW BooleanResult AS (
SELECT IB.docID, IB.DocTermRank as bTFIDF,
 ID.DocTermRank as dTFIDF,
 IR.DocTermRank as rTFIDF,
 FROM InvertedFile IB, InvertedFile ID, InvertedFile IR
 WHERE IB.docID = ID.docID AND ID.docID = IR.docID
 AND IB.term = “Berkeley”
 AND ID.term = “Database”
 AND IR.term = “Research”);

–InvertedFile (term string, docID int64,
 DocTermRank float)

Simple
Boolean
Search

Cosine similarity.
Note that the query
“doc” vector is a
constant

2

Ranking

• We’ll only rank Boolean results
– Note: this is just a heuristic! (Why?)

• What’s a fix? Is it feasible?
– Recall: a merge-join of the postings-lists from each term, sorted by

docID
• While merging postings lists…

– For each docID that matches on all terms (Bool)
• Compute cosine distance to query

– I.e. For all terms, Sum of
 (product of query-term-rank and DocTermRank)

• This collapses the view in the previous slide
• What’s wrong with this picture??

0.11157

0.12649

0.36142

DTRankdocID

0.002121

0.87649

0.98729

DTRankdocID

0.32157

0.65449

0.13716

DTRankdocID

Σi qTermRanki*DocTermRanki

Sort

Berkeley Database Research

Some Additional Ranking Tricks

• Phrases/Proximity
– Bump exact phrase matches up the ranking
– Give extra weight to proximate occurrences

• Query expansion, suggestions
– Can keep a similarity matrix on terms, and expand/modify people’s queries

• Fix misspellings
– E.g. via an inverted index on n-grams
– Trigrams for “misspelling” are {mis, iss, ssp, spe, pel, ell, lli, lin, ing}

• Document expansion
– Can add terms to a doc before inserting into inverted file

• E.g. in “anchor text” of refs to the doc
• Not all occurrences are created equal

– Mess with DocTermRank based on:
• Fonts, position in doc (title, etc.)
• Don’t forget to normalize: “tugs” doc in direction of heavier weighted terms

Hypertext Ranking

• On the web, we have more information to exploit
– The hyperlinks (and their anchor text)
– Comes from Social Network Theory (Citation Analysis)
– “Hubs and Authorities” (Clever), “PageRank” (Google)

• Intuition (Google’s PageRank)
– If you are important, and you link to me, then I’m important
– Recursive definition --> recursive computation

1. Everybody starts with weight 1.0
2. Share your weight among all your outlinks
3. Repeat (2) until things converge

– Note: computes the principal eigenvector of the adjacency matrix
• And you thought linear algebra was boring :-)

– Leaving out some details here …
• PageRank sure seems to help

– But rumor says that other factors matter as much or more
• Anchor text, title/bold text, etc. --> much tweaking over time

1.0

1/3

1/3

1/3

1/27

1/100
Random Notes from the Real World
• The web’s dictionary of terms is HUGE. Includes:

– numerals: “1”, “2”, “3”, … “987364903”, …
– codes: “transValueIsNull”, “palloc”, …
– misspellings: “teh”, “quik”, “browne”, “focs”
– multiple languages: “hola”, “bonjour”, “ここんんににちちはは” (Japanese),

etc.
• Web spam

– Try to get top-rated. Companies will help you with this!
– Imagine how to spam TF x IDF

• “Stanford Stanford Stanford Stanford Stanford Stanford Stanford Stanford
Stanford … Stanford lost The Big Game”

• And use white text on a white background :-)

– Imagine spamming PageRank…?!
• Some “real world” stuff makes life easier

– Terms in queries are Zipfian! Can cache answers in memory effectively.
– Queries are usually little (1-2 words)
– Users don’t notice minor inconsistencies in answers

• Big challenges in running thousands of machines, 24x7 service!

Parallelism 101: Hardware

• Shared Memory

• Shared Disk

• Shared Nothing (Clusters)

Parallelism 101: Metrics

• Speedup
– Same task, more resources

• Scaleup
– Bigger task, bigger resources

• Transaction scaleup
– More tasks, bigger resources

3

Parallelism 101: Types of Parallelism

• Pipelined Parallelism

• Partition Parallelism

Barriers to Perfect Parallelization

• Startup

• Interference

• Skew

Relational Stuff Parallelizes Beautifully

• Dataflow: Single Instruction Multiple Data
(SIMD)

• Relational, so order-independent!
• Pipelines AND Parallelizes beautifully

Data Layouts

• How to partition a table?
– Round-robin
– Range-partition
– Hash partition

• Secondary indexes?
– Partitioned with data

• Broadcast and fetch
• Expensive to maintain DISTINCT

– Partitioned by key
• Two-step lookup (latency)

Parallel Aggregation

• SUM

• AVERAGE

• MEDIAN

Parallel Sort

• Read data and range-partition it on the fly
• Sort locally
• Pipelining too!

– Reading from disk
– Sending over NW
– Receiving and sorting
– Writing runs

4

|| Hash Join

• Piece of cake!

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

How about our text search query?

0.11157

0.12649

0.36142

DTRankdocID

0.002121

0.87649

0.98729

DTRankdocID

0.32157

0.65449

0.13716

DTRankdocID

Σi qTermRanki*DocTermRanki

Top-K

Berkeley Database Research

merge

