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Schema Refinement
and Normalization

Nobody realizes that some
people expend tremendous
energy merely to be normal.
                              Albert Camus

Functional Dependencies (Review)
• A functional dependency X → Y holds over relation

schema R if, for every allowable instance r of R:
      t1 ∈ r,  t2 ∈ r,  πX (t1) = πX (t2)
                implies   πY (t1) = πY (t2)
(where t1 and t2 are tuples;X and Y are sets of attributes)

• In other words: X → Y means
  Given any two tuples in r, if the X values are the same,

then the Y values must also be the same. (but not vice
versa)

• Can read “→” as “determines”

Normal Forms

• Back to schema refinement…
• Q1: is any refinement is needed??!
• If a relation is in a normal form (BCNF, 3NF etc.):

– we know that certain problems are avoided/minimized.
– helps decide whether decomposing a relation is useful.

• Role of FDs in detecting redundancy:
– Consider a relation R with 3 attributes, ABC.

• No (non-trivial) FDs hold:   There is no redundancy here.
• Given A → B:   If A is not a key, then several tuples could have the

same A value, and if so, they’ll all have the same B value!

• 1st Normal Form – all attributes are atomic
• 1st ⊃2nd (of historical interest) ⊃ 3rd ⊃ Boyce-Codd ⊃ …

Boyce-Codd Normal Form  (BCNF)

• Reln R with FDs F is in BCNF if, for all X → A  in F+

– A ∈ X   (called a trivial FD), or
– X is a superkey for R.

• In other words: “R is in BCNF if the only non-trivial FDs
over R are key constraints.”

• If R in BCNF, then every field of every tuple records
information that cannot be inferred  using FDs alone.
– Say we know FD X → A holds this example relation:

 
• Can you guess the value of  the
missing attribute?

•Yes, so relation is not in BCNF

Decomposition of a Relation Schema

• If a relation is not in a desired normal form, it can be
decomposed into multiple relations that each are in that
normal form.

• Suppose that relation R contains attributes A1 ... An.  A
decomposition of R consists of replacing R by two or more
relations such that:
– Each new relation scheme contains a subset of the

attributes of R, and
– Every attribute of R appears as an attribute of at least

one of the new relations.

 Example (same as before)

• SNLRWH has FDs  S → SNLRWH  and  R → W

• Q: Is this relation in BCNF?

Hourly_Emps

No, The second FD causes a  violation;
W values repeatedly associated with R values.
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Decomposing a Relation
• Easiest fix is to create a relation RW to store these

associations, and to remove W from the main
schema:
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Wages

•Decompositions should be used only when needed.
–Q: potential problems of decomposition?

•Q: Are both of these relations are now in BCNF?

Problems with Decompositions

• There are three potential problems to consider:
1) May be impossible to reconstruct the original relation!

(Lossiness)
• Fortunately, not in the SNLRWH example.

2) Dependency checking may require joins.
• Fortunately, not in the SNLRWH example.

3) Some queries become more expensive.
• e.g.,  How much does Guldu earn?

Tradeoff:   Must consider these issues vs.
redundancy.

Lossless Decomposition (example)

=

><

Lossy Decomposition (example)

A → B; C → B

=><

Lossless Join Decompositions

• Decomposition of R into X and Y is lossless-join w.r.t.
a set of FDs F if, for every instance r  that satisfies F:
           (r)              (r)   =  r

• It is always true that   r            (r)             (r)
– In general, the other direction does not hold!  If it does,

the decomposition is lossless-join.
• Definition extended to decomposition into 3 or more

relations in a straightforward way.
• It is essential that all decompositions used to deal

with redundancy be lossless!  (Avoids Problem #1)
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More on Lossless Decomposition

• The decomposition of R into X and Y is
lossless with respect to F  if and only if  the
closure of F contains:

X ∩ Y → X,   or
X ∩ Y → Y

in example: decomposing ABC into AB and BC is
lossy, because intersection (i.e., “B”) is not a key
of either resulting relation.

• Useful result: If W → Z holds over R and  W ∩ Z is
empty, then decomposition of R into R-Z and WZ is
loss-less.

Common attributes form
a superkey for one side or
the other
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Lossless Decomposition (example)

A → B; C → B

But, now we can’t check A → B without doing a join!

=><

Dependency Preserving Decomposition

• Dependency preserving decomposition (Intuitive):

– If R is decomposed into X, Y and Z, and we
enforce the FDs that hold individually on X, on
Y and on Z, then all FDs that were given to hold
on R must also hold.  (Avoids Problem #2 on
our list.)

• Projection of set of FDs F :   If R is decomposed into
X and Y the projection of F on X  (denoted FX ) is the
set of FDs U → V in F+ (closure of F , not just F )
such that all of the attributes  U, V are in X. (same
holds for Y of course)

Dependency Preserving Decompositions (Contd.)

• Decomposition of R into X and Y is dependency
preserving if  (FX ∪ FY ) +  =  F +

– i.e., if we consider only dependencies in the closure F +

that can be checked in X without considering Y, and in Y
without considering X,  these imply all dependencies in F +.

• Important to consider F + in this definition:
– ABC,  A → B,  B → C,  C → A, decomposed into AB and BC.
– Is this dependency preserving?  Is  C → A  preserved?????

• note: F + contains F ∪ {A → C, B → A, C → B}, so…

• FAB contains A →B and  B → A; FBC contains B → C and C → B
• So, (FAB ∪ FBC)

+ contains C → A

Decomposition into BCNF
• Consider relation R with FDs F.  If X → Y violates

BCNF, decompose R into  R - Y and XY (guaranteed
to be loss-less).
– Repeated application of this idea will give us a collection

of relations that are in BCNF; lossless join
decomposition, and guaranteed to terminate.

– e.g.,  CSJDPQV,  key C,  JP → C,  SD → P,   J → S
–  {contractid, supplierid, projectid,deptid,partid, qty, value}
– To deal with SD → P, decompose into  SDP, CSJDQV.
– To deal with J → S, decompose CSJDQV into JS and

CJDQV
– So we end up with: SDP, JS, and CJDQV

• Note: several dependencies may cause violation of
BCNF.  The order in which we ``deal with’’ them
could lead to very different sets of relations!

BCNF and Dependency Preservation
• In general, there may not be a dependency preserving

decomposition into BCNF.
– e.g.,  CSZ,  CS → Z,  Z → C
– Can’t decompose while preserving 1st FD;  not in BCNF.

• Similarly,  decomposition of CSJDPQV into SDP, JS and
CJDQV is not dependency preserving  (w.r.t. the FDs
JP → C,  SD → P  and  J → S).

•  {contractid, supplierid, projectid,deptid,partid, qty, value}
– However, it is a lossless join decomposition.
– In this case, adding   JPC to the collection of relations

gives us a dependency preserving decomposition.
• but JPC tuples are stored only for checking the f.d.  (Redundancy!)

Third Normal Form  (3NF)

• Reln R with FDs F  is in 3NF if, for all X → A  in F+

A ∈ X   (called a trivial FD), or

X is a superkey of R, or
A is part of some candidate key (not superkey!) for R.

(sometimes stated as “A is prime”)
• Minimality of a key is crucial in third condition above!
• If R is in BCNF, obviously in 3NF.
• If R is in 3NF, some redundancy is possible.  It is a

compromise, used when BCNF not achievable (e.g., no
``good’’ decomp, or performance considerations).
– Lossless-join, dependency-preserving decomposition of R

into a collection of 3NF relations always possible.
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What Does 3NF Achieve?
• If 3NF violated by X → A, one of the following holds:

– X is a subset of some key K (“partial dependency”)
• We store (X, A) pairs redundantly.
• e.g. Reserves SBDC (C is for credit card) with key SBD and       S → C

– X is not a proper subset of any key. (“transitive dep.”)
• There is a chain of FDs  K → X → A
•  So we can’t associate an X value with a K value unless we also

associate an A value with an X value (different K’s, same X implies
same A!) – problem with initial SNLRWH example.

• But: even if R is in 3NF, these problems could arise.
– e.g., Reserves  SBDC (note: “C” is for credit card here),  S → C,

C → S is in 3NF (why?), but for each reservation of sailor S,  same
(S, C) pair is stored.

• Thus, 3NF is indeed a compromise relative to BCNF.
– You have to deal with the partial and transitive dependency issues

in your application code!

Decomposition into 3NF
• Obviously, the algorithm for lossless join decomp into

BCNF can be used to obtain a lossless join decomp into
3NF (typically, can stop earlier) but does not ensure
dependency preservation.

• To ensure dependency preservation, one idea:
– If  X → Y  is not preserved,  add relation XY.

Problem is that XY may violate 3NF!  e.g.,  consider the
addition of CJP to `preserve’  JP → C.   What if we also
have  J → C ?

• Refinement:  Instead of the given set of FDs F, use a
minimal cover for F.

Minimal Cover for a Set of FDs
• Minimal cover  G for a set of FDs F:

– Closure of F  =  closure of G.
– Right hand side of each FD in G is a single attribute.
– If we modify G by deleting an FD or by deleting attributes

from an FD in G, the closure changes.
• Intuitively, every FD in G is needed, and ``as small as

possible’’ in order to get the same closure as F.
• e.g.,  A → B,  ABCD → E,  EF → GH,  ACDF → EG has the

following minimal cover:
– A → B,  ACD → E,  EF → G  and  EF → H

• M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
– (in book)

Summary of Schema Refinement

• BCNF: each field contains information that cannot be
inferred using only FDs.
– ensuring BCNF is a good heuristic.

• Not in BCNF?  Try decomposing into BCNF relations.
– Must consider whether all FDs are preserved!

• Lossless-join, dependency preserving decomposition
into BCNF impossible?  Consider 3NF.
– Same if BCNF decomp is unsuitable for typical queries
– Decompositions should be carried out and/or re-examined

while keeping performance requirements in mind.
• Note: even more restrictive Normal Forms exist (we

don’t cover them in this course, but some are in the
book.)


