Schema Refinement
and Normalization

Nobody realizes that some

people expend tremendous

energy merely to be normal.
Albert Camus

ﬁ Functional Dependencies (Review)

« A functional dependency X — Y holds over relation

schema R if, for every allowable instance r of R:
tier, 2€r, J'L’X(tl) = JTX(tZ)
implies 7Ty (t1) = 7y (£2)

(where t1 and t2 are tuples;X and Y are sets of attributes)

¢ In other words: X — Y means

Given any two tuples in r, if the X values are the same,
then the Y values must also be the same. (but not vice
versa)

¢ Can read "—" as “determines”

ﬁ Normal Forms

* Back to schema refinement...
¢ Q1:is any refinement is needed??!
« If a relation is in a normal form (BCNF, 3NF etc.):
— we know that certain problems are avoided/minimized.
— helps decide whether decomposing a relation is useful.
* Role of FDs in detecting redundancy:
— Consider a relation R with 3 attributes, ABC.
» No (non-trivial) FDs hold: There is no redundancy here.
» Given A — B: If Alis not a key, then several tuples could have the
same A value, and if so, they'll all have the same B value!
¢ 1st Normal Form — all attributes are atomic
o 1st 52nd (of historical interest) D 374> Boyce-Codd D ...

ﬁ Boyce-Codd Normal Form (BCNF)

Reln R with FDs Fis in BCNF if, for all X — A in F*
—Ae X (called a trivial FD), or
— Xis a superkey for R.

In other words: "R is in BCNF if the only non-trivial FDs
over R are key constraints.”

If R in BCNF, then every field of every tuple records
information that cannot be inferred using FDs alone.
- Say we know FD X — A holds this example relation: |y |y [A

« Can you guess the value of the m gl |m
missing attribute? u gl [

eYes, so relation is not in BCNF

ﬁ Decomposition of a Relation Schema

¢ If a relation is not in a desired normal form, it can be
decomposed into multiple relations that each are in that
normal form.

» Suppose that relation R contains attributes A1 ... An. A
decomposition of R consists of replacing R by two or more
relations such that:

— Each new relation scheme contains a subset of the
attributes of R, and

— Every attribute of R appears as an attribute of at least
one of the new relations.

ﬁ Example (same as before)

S ‘N ‘L R (W ‘H
I Eeles BN N (1N W
NEL-NI-EEEE Bmiay BN N NN (NN
IS AN Bestiees IN B (N NN Hourly_Emps
AN |l mEnE m
NIE-E-EIEE el N || m .

e SNLRWH has FDs S — SNLRWH and R - W
¢ Q: Is this relation in BCNF?

No, The second FD causes a violation;
W values repeatedly associated with R values.

= .)
- Decomposing a Relation

e Easiest fix is to create a relation RW to store these
associations, and to remove W from the main

schema:
S N L R ‘H

I el W \l]
MI-AI-EEEE Bmiay BN N NN
IN0-EE-EEEE Bemtiee NN N NN
- | el] \l m
I (Ealages NN || | Wages

Hourly_Emps2
*Q: Are both of these relations are now in BCNF?

sDecompositions should be used only when needed.
—Q: potential problems of decomposition?

=
- Problems with Decompositions

* There are three potential problems to consider:
1) May be impossible to reconstruct the original relation!
(Lossiness)

« Fortunately, not in the SNLRWH example.

2) Dependency checking may require joins.
« Fortunately, not in the SNLRWH example.

3) Some queries become more expensive.
¢ e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs.
redundancy.

==
- Lossless Decomposition (example)

S N L R ‘H
I el W \l]
MI-AI-EEEE Bmiay BN N NN
IN0-EE-EEEE Bemtiee NN N (NN
- | el 1] \l m
NIE-E-EI Nl NN || |

s |
I el ‘l [l]

— (NEE-ER-EEEE Bmlay B N (1N EE
B TTE T TS S
AR |l m \l 1
NIE-E-EIEE el N || m .

="
- Lossy Decomposition (example)

A [B [C A [B B [C
1 mn 1m (]
I »II [|
101 I] | I |
A—B;C—B
A B[C
A B B |C 1 n[n
1. L = LI |
s D<o (L
(L LI | 1 28
7 233

==
-Lossless Join Decompositions

a set of FDs F if, for every instance r that satisfies F:
Tx(r) DA Ty(r) = r
e Itis alwaystruethat r C 7, (r) D 7y (F)
— In general, the other direction does not hold! If it does,
the decomposition is lossless-join.
« Definition extended to decomposition into 3 or more
relations in a straightforward way.

o It is essential that all decompositions used to deal
with redundancy be lossless! (Avoids Problem #1)

+ Decomposition of R into X and Y is /ossless-join w.r.t.

=
More on Lossless Decomposition

¢ The decomposition of R into X and Y is
lossless with respect to F if and only if the
closure of F contains: Common attributes form
XNY — X, or ?;eu}i;r;eyfnr one side or
XNyYy-—-Y
in example: decomposing ABC into AB and BC is
lossy, because intersection (i.e., “B") is not a key
of either resulting relation.
e Useful result: If W — Z holds over Rand W N Zis
empty, then decomposition of R into R-Z and WZ is
loss-less.

e
-Lossless Decomposition (example)
A B |C A [C B |C
1 5N 1 L I |
| I B | » | I | 1l
[I I | [Il | nn
A—B;C—B
A |C B IC A B |C
1 1 "] —_ 1 1|1
s D} GG "B
[Il | [| [I |
But, now we can’t check A — B without doing a join!

==
- Dependency Preserving Decomposition

+ Dependency preserving decomposition (Intuitive):

—If R is decomposed into X, Y and Z, and we
enforce the FDs that hold individually on X, on
Y and on Z, then all FDs that were given to hold
on R must also hold. (Avoids Problem #2 on

our list.)

* Projection of set of FDs F: If R is decomposed into
X and Y the projection of F on X (denoted F,) is the
set of FDs U — V in F* (closure of F, not just F)
such that all of the attributes U, V are in X. (same
holds for Y of course)

iependency Preserving Decompositions (Contd.)

« Decomposition of R into X and Y is dependency
preserving if (FxUFy)* = F+
- i.e., if we consider only dependencies in the closure F +
that can be checked in X without considering Y, and in Y
without considering X, these imply all dependencies in F *.
+ Important to consider F * in this definition:
- ABC, A— B, B—C, C— A, decomposed into AB and BC.

* note: F+ contains FU {A — C, B— A, C — B}, so...

e F,; contains A —B and B — A; Fy.contains B — Cand C — B
® S0, (Fps U Fgo)t contains C — A

=

BCNF and Dependency Preservation

+ In general, there may not be a dependency preserving

decomposition into BCNF.
-eg., CSZ, CS—-2, 2—-C
— Can't decompose while preserving 1st FD; not in BCNF.

+ Similarly, decomposition of CSIDPQV into SDP, JS and
CIDQV is not dependency preserving (w.r.t. the FDs
JP—-C, SD—P and J—S).

» {contractid, supplierid, projectid,deptid,partid, qty, value}

— However, it is a lossless join decomposition.
— In this case, adding JPC to the collection of relations
gives us a dependency preserving decomposition.
« but JPC tuples are stored only for checking the f.d. (Redundancy!)

=
-Decomposition into BCNF

+ Consider relation R with FDs F. If X — Y violates
BCNF, decompose R into R - Y and XY (guaranteed
to be loss-less).

— Repeated application of this idea will give us a collection
of relations that are in BCNF; lossless join
decomposition, and guaranteed to terminate.

—-e.g., CSIDPQV, keyC, P—-C, SD—-P, J—>S

— {contractid, supplierid, projectid,deptid partid, qty, value}

— To deal with SD — P, decompose into SDP, CSIDQV.

— To deal with J — S, decompose CSIDQV into JS and
CiDQV

— So we end up with: SDP,]S, and CIDQV

* Note: several dependencies may cause violation of
BCNF. The order in which we " "deal with” them
could lead to very different sets of relations!

=
- Third Normal Form (3NF)

* Reln R with FDs F is in 3NF if, for all X — A in F*
A€ X (called a trivial FD), or
X is a superkey of R, or
A is part of some candidate key (not superkey!) for R.
(sometimes stated as “A is prime”)
* Minimality of a key is crucial in third condition above!
If R is in BCNF, obviously in 3NF.
If R is in 3NF, some redundancy is possible. Itis a
compromise, used when BCNF not achievable (e.g., no
" “good” decomp, or performance considerations).
— Lossless-join, dependency-preserving decomposition of R
into a collection of 3NF relations always possible.

S
- What Does 3NF Achieve?

« If 3NF violated by X — A, one of the following holds:
— Xis a subset of some key K (“partial dependency”)
« We store (X, A) pairs redundantly.
« e.g. Reserves SBDC (C is for credit card) with key SBD and S—C
— Xis not a proper subset of any key. (“transitive dep.”)
e Thereis a chain of FDs K — X — A
* So we can't associate an X value with a K value unless we also
associate an A value with an X value (different K's, same X implies
same A!) — problem with initial SNLRWH example.
+ But: even if R is in 3NF, these problems could arise.
— e.g., Reserves SBDC (note: “C” is for credit card here), S — C,
C — Siis in 3NF (why?), but for each reservation of sailor S, same
(S, C) pair is stored.
* Thus, 3NF is indeed a compromise relative to BCNF.
— You have to deal with the partial and transitive dependency issues
in your application code!

Decomposition into 3NF

¢ Obviously, the algorithm for lossless join decomp into
BCNF can be used to obtain a lossless join decomp into
3NF (typically, can stop earlier) but does not ensure
dependency preservation.

¢ To ensure dependency preservation, one idea:
—If X—Y is not preserved, add relation XY.

Problem is that XY may violate 3NF! e.g., consider the
addition of CJP to “preserve’ JP — C. What if we also
have J— C?

« Refinement: Instead of the given set of FDs F, use a
minimal cover for F.

Minimal Cover for a Set of FDs

e Minimal cover G for a set of FDs F:
— Closure of F = closure of G.
— Right hand side of each FD in G is a single attribute.
— If we modify G by deleting an FD or by deleting attributes
from an FD in G, the closure changes.
« Intuitively, every FD in G is needed, and " " as small as
possible” in order to get the same closure as F.
s e.g., A— B, ABCD — E, EF — GH, ACDF — EG has the
following minimal cover:
-A—-B, ACD—E, EF—-G and EF - H
* M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
— (in book)

Summary of Schema Refinement

+ BCNF: each field contains information that cannot be
inferred using only FDs.

— ensuring BCNF is a good heuristic.

¢ Not in BCNF? Try decomposing into BCNF relations.
— Must consider whether all FDs are preserved!

* Lossless-join, dependency preserving decomposition
into BCNF impossible? Consider 3NF.
— Same if BCNF decomp is unsuitable for typical queries
— Decompositions should be carried out and/or re-examined

while keeping performance requirements in mind.

* Note: even more restrictive Normal Forms exist (we
don’t cover them in this course, but some are in the
book.)

