SQL: The Query Language
Part 2

CS186, Fall 2005
R & G - Chapter 5

The important thing is not to
stop questioning.

Albert Einstein

ﬁ Reserves Sid | bid d_ay

22 [101 [10/10/96
Example Instances o5 |103 |11/12196

Sailors [gd [sname rating |age
22 |Dusgtin | 7 |45.0

31 |Lubber| 8 55.5
95 |Bob 3 63.5

Boats |bid |bname |color
101 |Interlake |blue
102 | Interlake |red
103 |Clipper |green
104 [Marine |red

Wl Queries With GROUP BY

¢ To generate values for a column based on groups
of rows, use aggregate functions in SELECT
statements with the GROUP BY clause

SELECT [DISTINCT] target-list
FROM relation-list

[WHERE qualification]
GROUP BY grouping-list

The target-list contains (i) list of column names &
(i1) terms with aggregate operations (e.g., MIN (S.age)).

— column name list (i) can contain only attributes from
the grouping-list.

ﬁ Group By Examples

For each rating, find the average age of the sailors

SELECT S.rating, AVG (S.age)
FROM Sailors S
GROUP BY S.rating

For each rating find the age of the youngest
sailor with age > 18

SELECT S.rating, MIN (S.age)
FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

ﬁ Conceptual Evaluation

SELECT [DISTINCT] target-list
FROM relation-list

[WHERE qualification]
GROUP BY grouping-list

¢ The cross-product of re/ation-/ist is computed, tuples
that fail gualification are discarded, " unnecessary’
fields are deleted, and the remaining tuples are
partitioned into groups by the value of attributes in
grouping-list.

* One answer tuple is generated per qualifying group.

If DISTINCT is specified: drop duplicate answer tuples.

ﬁ SELECT S.rating, MIN (S.age)
FROM Sailors S Answer Table
WHERE S.age >= 18
GROUP BY S.rating 3. Perform
Aggregation
sid [sname |rating |age 1]
22 |dustin 7 450 ratinglage | |rating | age
31 |lubber 8 55.5 1 |330 1 330
71 |zorba 10 |16.0 7 |45.0 7 35.0
64 |horatio | 7 |35.0 7 1350 8 |55.0
29 |brutus | 1 [33.0 8 [555] | 10 |350
58 |rusty 10 [350 10 350
1. Form cross product I

2. Delete unneeded columns,
rows; form groups

i Find the number of reservations for
each red boat.

SELECT B.bid, COUNT(*) AS numres
FROM Boats B, Reserves R
WHERE R.bid=B.bid
AND B.color=‘red’
GROUP BY B.bid

e Grouping over a join of two relations.

-
i SELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color="red’
GROUP BY B.bid

b.bid __b.color _|r.bid b.bid b.color _|r.bid
101|blue 101
102|red 101
103|green 101
104{red 101
101|blue 102
102{red 102 102|red 102
103|green 102
104{red 102
1 2
[bbid__[scount |

o

Wl Queries With GROUP BY and
HAVING

HAVING group-qualification

¢ Use the HAVING clause with the GROUP BY clause to
restrict which group-rows are returned in the result
set

ﬁ Conceptual Evaluation

e Form groups as before.

e The is then applied to eliminate
some groups.
— Expressions in group-qualification must have a

—That is, attributes in must be
arguments of an aggregate op or must also appear
in the . (SQL does not exploit primary
key semantics here!)

e One answer tuple is generated per qualifying group.

Find the age of the youngest sailor with age >
18, for each rating with at least 2 such sailors

SELECT S.rating, MIN (S.age) |sid |sname |rating |age
FROM Sailors S 22 |Dustin | 7 |45.0
WHERE S.age >= 18 31 |lubber | 8 1555

GROUP BY S.rating o |worwa | 100180

HAVING COUNT (*) > 1 29 |brutus 1 330
58 |rusty 10 |35.0
rating age rating | m-age |count
1 |33.0 Y a
1 330 |1
7 1450
T olmol |7 350 |2 :
: ratin
E B e
10 135.0 10 350 |1 -

Answer relation

ﬁ Relational Division Re-visited

‘ Find sailors who've reserved all boats. ‘

SELECT S.sname

FROM Sailors S Sailors S such that ...

WHERE NOT EXISTS (SELECT B.bid there is no boat B without
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

a Reserves tuple showing S reserved B~ FROM Reserves R
WHERE R.bid=B.bid
AND R.sid=S.sid))

T

Relational Division Re-visited

Find sailors who've reserved all boats. ‘

e Can you do this using Group By
and Having?

SELECT S.name
FROM Sailors S, reserves R
WHERE S.sid = R.sid
GROUP BY S.name, S.sid
HAVING
COUNT(DISTINCT R.bid) =
(Select COUNT (*) FROM Boats)

Note: must have both sid and name in the GROUP BY
clause. Why?

e 5 SELECT S.name, S.sid
FROM Sailors S, reserves R
WHERE S.sid = r.sid
GROUP BY S.name, S.sid
HAVING

COUNT(DISTINCT R.bid) =
Select COUNT (*) FROM Boats

s.name _|s.sid id_|r.bid .

Dustin (22| 22 101 bid |bname | color

Lubber 3T 101 101 |Interlake |blue

Bob 95| 22 101 102 | Interlake |red

Dustin 22| %5 102 103 |Clipper |green

Lubber _34 102 ;

Sob Corl o o9 104 |Marine |red
Count (*) from boats = 4

s.name |s.sid bcount

Dustin 22 1 s.name s.sid

Bob 95 1

Apply having clause to groups

W INSERT

table_name [(column_list)]

table_name [(column_list)]

INSERT INTO Boats VALUES (105, ‘Clipper’, ‘purple’)
INSERT INTO Boats (bid, color) VALUES (99, ‘yellow")

You can also do a “bulk insert” of values from one
table into another:

INSERT INTO TEMP(bid)

SELECT r.bid FROM Reserves R WHERE r.sid = 22;
(must be type compatible)

Wl DELETE & UPDATE

table_name

DELETE FROM Boats WHERE color = ‘red’

DELETE FROM Boats b
WHERE b. bid =
(SELECT r.bid FROM Reserves R WHERE r.sid = 22)

Can also modify tuples using UPDATE statement.
UPDATE Boats
SET Color = “green”
WHERE bid = 103;

W \ull Values

* Field values in a tuple are sometimes (e.g., a
rating has not been assigned) or (e.g., no
spouse’s name).

— SQL provides a special value for such situations.
¢ The presence of complicates many issues. E.g.:
— Special operators needed to check if value is/is not nuil.

— Is rating>8 true or false when rating is equal to nu/? What
about and connectives?

— We need a (true, false and).

— Meaning of constructs must be defined carefully. (e.g.,
WHERE clause eliminates rows that don't evaluate to true.)

— New operators (in particular,) possible/needed.

ﬁ Joins

table_name
{LEFT IRIGHT | FULL } OUTER] table_name
ON qualification_list

Explicit join semantics needed unless it is an INNER join
(INNER is default)

== =
i Inner J0|n i SELECT s.sid, s.name, r.bid

Only the rows that match the search conditions are FROM Sailors s INNER JOIN Reserves r

returned. ON s.sid = r.sid
SELECT s.sid, s.name, r.bid sd mame reting |age sid | bid M
FROM Sailors s INNER JOIN Reserves r 22 \Dustin | 7 1450 | [22 [101 |10/10/96
ON s.sid = r.sid 31 |Lubber| 8 55.5
Returns only those sailors who have reserved boats 95 |Bob 3 63.5 95 |108 |11/12/96
SQL-92 also allows:
SELECT s.sid, s.name, r.bid s.sid s.name|r.bid
FROM Sailors s NATURAL JOIN Reserves r i
“NATURAL"” means equi-join for each pair of attributes 22|Dustin 101
with the same name 95|Bob 103
i Left OUter JOI n i SELECT s.sid, s.name, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r

. ON s.sid = r.sid
Left Outer Join returns all matched rows, plus all

unmatched rows from the table on the left of : : 3 3

the join clause sid Snan'?e rating |age | |sid |bid day
(use nulls in fields of non-matching tuples) 22 |Dustin | 71450 | [22 [101 [10/10/96

31 |Lubber| 8 55.5 95 103 |11/12/96
SELECT s.sid, s.name, r.bid 95 |Bob 3 63.5
FROM Sailors s LEFT OUTER JOIN Reserves r
ON s.sid = r.sid s.sid |s.name|r.bid
22|Dustin 101

Returns all sailors & information on whether they 95/Bob 103

have reserved boats

31|Lubber
i i i SELECT r.sid, b.bid, b.name
nght OUter JOIn FROM Reserves r RIGHT OUTER JOIN Boats b
ON r.bid = b.bid
: p bid |[bname |color
sid |bid d >

Right Outer Join returns all matched rows, plus — — &y 101 | Interlake | blue

all unmatched rows from the table on the right 22 1101 |10/10/96 102 | Interlake |red

of the join clause 95 |103 |11/12/96 103 |Clipper |green
SELECT r.sid, b.bid, b.name 104 |Marine |red

FROM Reserves r RIGHT OUTER JOIN Boats b

r.sid b.bid b.name
ON r.bid = b.bid

22 101(Interlake
Returns all boats & information on which ones 102|Interlake
are reserved. 95 103|Clipper

104|Marine

i Full Outer Join

Full Outer Join returns all (matched or
unmatched) rows from the tables on both
sides of the join clause

SELECT r.sid, b.bid, b.name
FROM Reserves r FULL OUTER JOIN Boats b
ON r.bid = b.bid

Returns all boats & all information on
reservations

e SELECT r.sid, b.bid, b.name
FROM Reserves r FULL OUTER JOIN Boats b

ON r.bid = b.bid bid [bname |color

sid |bid day 101 | Interlake |blue

22 [101 |10/10/96 }85 gt.iéaerke gfd%
95 |103 |11/12/96 104 | Marine | red

r.sid b.bid b.name
22 101(Interlake
102(Interlake
95 103|Clipper
104(Marine

Note: in this case it is the same as the ROJ because

bid is a foreign key in reserves, so all reservations must

have a corresponding tuple in boats.

ﬁ Views

view_name
select_statement

Makes development simpler
Often used for security
Not instantiated - makes updates tricky

CREATE VIEW Reds

ASSELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color="red’
GROUP BY B.bid

—
i CREATE VIEW Reds

ASSELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color="red’
GROUP BY B.bid

bbd fscout | . -
eds

