1. Define ACID, using no more than 10 words to describe each letter. (4 points)

Atomic___

Consistent___

Isolated___

Durable___

2. Which ACID property or properties does Recovery give us? (2 points)

Durable
Concurrency Control and Crash Recovery: LOCKING – 15 Points
Locking is the most popular concurrency control technique implemented by commercial database management systems.

Consider a database that is read-only (i.e., no transactions change any data in the database, data may be loaded into the database when the database is off-line). Suppose serializability needs to be supported. Please circle all correct statements: (5 points)

a. No locking is necessary.

b. Only read locks are necessary and they need to be held until end of transaction.

c. Only read locks are necessary but they can be released as soon as the read is complete.

d. Both read and write locks are necessary and locking must be done in two phases.

e. None of the above.

Consider the following database schema:

STUDENT(name, sid, gpa, level, dept)

Suppose the following two transactions are executed concurrently:

T1:
begin tran

update STUDENT set gpa = 4.0 where dept = 'CS'

commit tran

T2:
begin tran

insert into STUDENT values ('Mihut', 101, 3.9, 4, 'CS')

insert into STUDENT values ('Sirish', 102, 3.9, 3, 'CS')

commit tran

Assume Mihut and Sirish were not in the STUDENT table before the start of T1 or T2. Suppose read locks are released immediately after the read is done and write locks are held until end of transaction. Can it ever happen that after both T1 and T2 have committed, Mihut and Sirish have different gpa values? Please state your reasoning in support of your conclusion. If your answer depends on locking granularity, access methods or indexing, please analyze the possibilities. (10 points)

 This was an example of the Phantom Problem. If you only have row-level locking, Mihut & Sirish may end up with different GPAs. If you have table-level locking, they will end up with the same GPA.

If the buffer pool is large enough that uncommited data are never forced to disk, is UNDO still necessary? How about REDO? (4 points)

UNDO

a) YES

NO

REDO

b) YES

NO

If updates are always forced to disk when a transaction commits, is UNDO still necessary? How about REDO? (4 points)

UNDO

c) YES

NO

REDO

d) YES

NO

Problem #7

Consider the following two transactions:

T1:

begin xact

write C

read B

write C

commit xact

T2:

begin xact

write B

read C

read C

commit xact

(7a)[10] In a DBMS using the two-phase locking algorithm, whether transactions will cause deadlocks depends on how they are executed. If the above two transactions are executed concurrently, under what situations can a deadlock occur?
T1: X(C) wants S(B)

T2: X(B) wants S(C)
(7b)[5] In a DBMS that has not implemented any concurrency control algorithms, can non-repeatable reads occur if the above two transactions are executed concurrently? State your reasoning in support of your conclusion.

Yes T2:R(C), T1:W(C), T2:R(C)
