CS-184: Computer Graphics

Lecture \#I2: Radiometry

Administrative

- Reminder \#I : Midterm in two weeks
- There will be TA sessions for review
- See test from last year and study guide
- Prepare your "cheat sheet"
- Reminder \#2 :Assignment \#3 out soon

Today

- Radiometry: measuring light
- Local Illumination and Raytracing were discussed in an ad hoc fashion
- Proper discussion requires proper units
- Not just pretty pictures... but correct pictures

Matching Reality

Matching Reality

Units

- Light energy
- Really power not energy is what we measure
- Joules / second (J/s) = Watts (W)
- Spectral energy density
- power per unit spectrum interval
- Watts / nano-meter (W/nm)
- Properly done as function over spectrum
- Often just sampled for RGB
- Often we assume people know we're talking about S.E.D. and just say E...

Irradiance

- Total light striking surface from all directions
- Only meaningful w.r.t. a surface
- Power per square meter ($\mathrm{W} / \mathrm{m}^{2}$)
- Really S.E.D. per square meter (W/m² nm)
- Not all directions sum the same because of foreshortening

Radiant Exitance

- Total light leaving surface over all directions
- Only meaningful w.r.t. a surface
- Power per square meter ($\mathrm{W} / \mathrm{m}^{2}$)
- Really S.E.D. per square meter ($\mathrm{W} / \mathrm{m}^{2} / \mathrm{nm}$)
- Also called Radiosity
- Sum over all directions \Rightarrow same in all directions

Solid Angles

- Regular angles measured in radians
- Measured by arc-length on unit circle $[0 . .2 \pi]$
- Solid angles measured in steradians
- Measured by area on unit sphere $[0 . .4 \pi]$
- Not necessarily little round pieces...

9

Radiance

- Light energy passing though a point in space in a given direction
- Energy per steradian per square meter (W/m²/sr)
- S.E.D. per steradian per square meter ($\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr} / \mathrm{nm}$)
- Constant along straight lines in free space

Radiance

- Near surfaces, differentiate between
- Radiance from the surface (surface radiance)
- Radiance from other things (field radiance)

Light Fields

- The radiance at every point in space, direction, and frequency: 6D function
- Collapse frequency to RGB, and assume free space: 4D function
- Sample and record it over some volume

Light Fields

Levoy and Hanrahan, SIGGRAPH 1996

Light Fields

Levoy and Hanrahan, SIGGRAPH 1996

Light Fields

Computing Irradiance

- Integrate incoming radiance (field radiance) over all direction
- Take into account foreshortening

$$
\begin{aligned}
& H=\int_{\Omega} L_{f}(\mathbf{k}) \cos (\theta) \mathrm{d} \sigma \quad \\
& H=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} L_{f}(\theta, \phi) \cos (\theta) \sin (\theta) \mathrm{d} \theta \mathrm{~d} \phi
\end{aligned}
$$

Revisiting The BRDF

- How much light from direction A goes out in direction B
- Now we can talk about units:
- BRDF is ratio of foreshortened field radiance to surface radiance
$\rho\left(\theta_{i}, \theta_{o}\right)=\frac{L_{s}\left(\theta_{o}\right)}{L_{f}\left(\theta_{i}\right) \cos (\angle \hat{\mathbf{n}} \theta)}$

We left out frequency dependance here...
Also note for perfect Lambertian reflector with constant BRDF $\rho=1 / \pi$

The Rendering Equation

- Total light going out in some direction is given by an integral over all incoming directions:

$$
L_{s}\left(\mathbf{k}_{o}\right)=\int_{\Omega} \rho\left(\mathbf{k}_{o}, \mathbf{k}_{i}\right) L_{f}\left(\mathbf{k}_{i}\right) \cos (\theta) \mathrm{d} \sigma
$$

- Note, this is recursive ($\mathrm{my} L_{f}$ is another's L_{s})

The Rendering Equation

- We can rewrite explicitly in terms of L_{s}

$$
L_{s}\left(\mathbf{k}_{o}\right)=\int_{\Omega} \rho\left(\mathbf{k}_{o}, \mathbf{k}_{i}\right) L_{f}\left(\mathbf{k}_{i}\right) \cos \left(\theta_{i}\right) \mathrm{d} \sigma
$$

$$
L_{s}\left(\mathbf{k}_{o}, \mathbf{x}\right)=\int_{S} \frac{\rho\left(\mathbf{k}_{o}, \mathbf{k}_{i}\right) L_{s}\left(\mathbf{x}-\mathbf{x}^{\prime}, \mathbf{x}^{\prime}\right) \cos \left(\theta_{i}\right) \cos \left(\left\langle\hat{\mathbf{n}}^{\prime}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right) \delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right.}{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}} \mathrm{~d} \mathbf{x}^{\prime}
$$

Consider what ray tracing was doing....

Light Paths

- Many paths from light to eye
- Characterize by the types of bounces
- Begin at light
- End at eye
- "Specular" bounces
- "Diffuse" bounces

Light Paths

- Describe paths using strings
- LDE, LDSE, LSE, etc.
- Describe types of paths with regular expressions
- L\{D|S\}*E \longleftarrow Visible paths
- L\{D|S\}S*E « Standard raytracing
- L\{D|S\}E \longleftarrow Local illumination
-LD*E \longleftarrow Radiosity method (have not talked about yet)

