CS-184: Computer Graphics

Lecture #2:Scan Conversion

Prof. James O’Brien
University of California, Berkeley

ooooooooooooo

Today

o 2D Scan Conversion
o Drawing Lines
o Drawing Curves
o Filled Polygons
o Filling Algorithms

Drawing a Line

o Basically, its easy... but for the details

o Lines are a basic primitive that needs to be
done well...

Drawing a Line

o Basically, its easy... but for the details

o Lines are a basic primitive that needs to be
done well...

S A
PR e s
'//’;5(/./;:’:; = E_g{{j:f/[[ff/ > J

=
/!44" jjv 52
S

From “A Procedural Approach to Style for NPR Line Drawing from 3D models,”
by Grabli, Durand, Turquin, Sillion

Drawing a Line

Drawing a Line

o Some things to consider
o How thick are lines?

o How should they join up?

o Which pixels are the right ones!?

L2

For example: S e \) o
\
\In:(ﬂl-yl)
Drawing a Line
Y2 .
\‘1
yl""""‘:‘::;:‘=" "v t— P = (72,%2)
- i \
|
T k Inclusive
1 p = (z

1. Y1)

Endpoints

Drawing a Line

y=m-x+b,x € [x1,x;]

Y2—)1
nm =

Xy — X1
b=yl —m-x

Drawing a Line

]

Ax =1
Ay =m-Ax

x=x1

y=yl

while(x<=x2)
plot(x,y)
x++

y+=Dy

Drawing a Line

Ax=1
Ay =m-Ax

After rounding

L1 L2

Drawing a Line

Ax=1
Ay =m-Ax
®® Y Y
e e Accumulation of
Yl _ A roundoff errors

How slow is float-
to-int conversion?

L1 L2

Drawing a Line

im| <1 im| > 1

Drawing a Line

void drawLine-Errorl(int x1,x2, int yl,y2)

float m = float(y2-yl)/(x2-x1) |
int x = x1
float y = yl Not exact math

while (x <= x2)

setPixel (x,round(y),PIXEL ON)

x +=1

Accumulates errors

Drawing a Line

void drawlLine-Error2(int x1,x2, int yl,y2)
float m = float(y2-yl)/(x2-x1)
int x = x1

int y = yl
float e = 0.0

while (x <= x2)

setPixel (x,[y], PIXEL_ON)
No more rounding

x +=1

e +t=m

if (e >= 0.5)
y+=1
e-=1.0

Drawing a Line

void drawLine-Error3(int x1,x2, int yl,y2)

int x = x1
int y = yl
float e = -0.5

while (x <= x2)
setPixel (x,y,PIXEL ON)

X +=1
e += float(y2-yl)/(x2-x1)
if (e >= 0.0)

y+=1

e-=1.0

Drawing a Line

void drawLine-Error4(int x1,x2, int yl,y2)
int x = x1
int y = yl
float e = -0.5%(x2-x1) // was -0.5

while (x <= x2)

setPixel (x,y,PIXEL ON)

X +=1
e += y2-yl // was /(x2-x1)
if (e >= 0.0) // no change
y+=1
e-=(x2-x1) // was 1.0

Drawing a Line

void drawLine-Error5(int x1,x2, int yl,y2)

int x = x1
int y yl
int e -(x2-x1) // removed *0.5

while (x <= x2)

setPixel (x,y,PIXEL ON)

X +=1

e += 2% (y2-yl) // added 2%*

if (e >= 0.0) // no change
y+=1

e-=2%(x2-x1) // added 2*

Drawing a Line

void drawLine-Bresenham(int x1,x2, int yl,y2)

int x = x1

int y = yl
: Not wrong
while (x <= x2)
setPixel(x,y,PIXEL ON) ‘m‘ <1
X1 <X

x +=1
if (e >= 0.0)
y+=1

e-=2*(x2-x1)

Drawing a Line

o How thick!?

o Ends?

20

Drawing a Line

o Joining!?
Ugly Bevel Round Miter

21

Drawing Curves

y=f(x)

Only one value of y for each value of x...

22

Drawing Curves

o Parametric curves

o Both x and y are a function of some third parameter

x = f(u)
y=f(u)
x = f(u)

Drawing Curves

Drawing Curves

o Draw curves by drawing line segments
o Must take care in computing end points for lines

o How long should each line segment be?

Drawing Curves

o Draw curves by drawing line segments
o Must take care in computing end points for lines
o How long should each line segment be?

o Variable spaced points

Drawing Curves

o Midpoint-test subdivision

[£(ttmia) —1(0.5)]

Drawing Curves

o Midpoint-test subdivision

[£(ttmia) —1(0.5)]

Drawing Curves

o Midpoint-test subdivision

\

[£(ttmia) —1(0.5)]

29

Drawing Curves

o Midpoint-test subdivision
o Not perfect

o We need more information for a guarantee...

[£(ttmia) —1(0.5)]

30

Filled Polygons

Filled Polygons

Filled Polygons

Toggle inside/outside flag to "INSIDE"

Filled Polygons

Toggle inside/outside flag to "OUTSIDE"

J

34

Filled Polygons

What happens at these locations?

Filled Polygons

If we count ONCE...

36

Filled Polygons

If we count TWICE...

37

Filled Polygons

Treat (scan y = vertex y) as (scan y > vertex y)

o
—

38

Filled Polygons

Horizontal edges

A

Y|

Y

L

Filled Polygons

Horizontal edges

Filled Polygons

o “Equality Removal” applies to all vertices

o Both x and y coordinates

41

Filled Polygons

o Final result;

42

Filled Polygons

o> Who does this pixel belong to!?

Inside/Outside Testing
The Polygon Non-exterior
Non-zero winding Parity

= e g

Flood Fill

45

Flood Fill

Start Position

Filled Pixel Spans

Stacknd Poaitions

s soas

46

