CS-184: Computer Graphics

Lecture #2: Scan Conversion

Prof. James O'Brien University of California, Berkeley

V2006-S-02-1 0

Today

- 2D Scan Conversion
 - Drawing Lines
 - Drawing Curves
 - Filled Polygons
 - Filling Algorithms

o Basically, its easy... but for the details

• Lines are a basic primitive that needs to be

done well...

3

Drawing a Line

Basically, its easy... but for the details

• Lines are a basic primitive that needs to be

done well...

From "A Procedural Approach to Style for NPR Line Drawing from 3D models," by Grabli, Durand, Turquin, Sillion

- Some things to consider
 - o How thick are lines?
 - How should they join up?
 - Which pixels are the right ones?

For example:

Drawing a Line

$$y = m \cdot x + b, x \in [x_1, x_2]$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$b = y1 - m \cdot x_1$$


```
void drawLine-Error1(int x1,x2, int y1,y2)

float m = float(y2-y1)/(x2-x1)
  int x = x1
  float y = y1

Not exact math

while (x <= x2)

setPixel(x,round(y),PIXEL_ON)

x += 1
  y += m

Accumulates errors</pre>
```

```
void drawLine-Error2(int x1,x2, int y1,y2)

float m = float(y2-y1)/(x2-x1)
int x = x1
int y = y1
int y = y1
float e = 0.0

while (x <= x2)

setPixel(x,y,PIXEL_ON)

x += 1
e += m
if (e >= 0.5)
y+=1
e-=1.0
No more rounding
```

Drawing a Line

```
void drawLine-Error3(int x1,x2, int y1,y2)
int x = x1
int y = y1
float e = -0.5

while (x <= x2)

setPixel(x,y,PIXEL_ON)

x += 1
e += float(y2-y1)/(x2-x1)
if (e >= 0.0)
    y+=1
e-=1.0
```

16

void drawLine-Bresenham(int x1,x2, int y1,y2)

int x = x1
int y = y1
int e = -(x2-x1)

while (x <= x2)

setPixel(x,y,PIXEL_ON)

x += 1
e += 2*(y2-y1)
if (e >= 0.0)
 y+=1
e -= 2*(x2-x1)

Faster Not wrong

$$|m| \le 1$$

$$x_1 \le x_2$$

1

Drawing a Line

• How thick?

• Ends?

o Joining?

Ugly

Bevel

Round

Miter

21

Drawing Curves

Only one value of y for each value of x...

- Parametric curves
 - \circ Both x and y are a function of some third parameter

$$u \in [u_0 \dots u_1]$$

Drawing Curves

$$\mathbf{x} = \mathbf{f}(u)$$

$$u \in [u_0 \dots u_1]$$

- Draw curves by drawing line segments
 - Must take care in computing end points for lines
 - How long should each line segment be?

Drawing Curves

- Draw curves by drawing line segments
 - Must take care in computing end points for lines
 - How long should each line segment be?
 - Variable spaced points

 $\circ \ Midpoint-test \ subdivision \\$

 $|\mathbf{f}(u_{mid}) - \mathbf{l}(0.5)|$

27

Drawing Curves

• Midpoint-test subdivision

 $|\mathbf{f}(u_{mid}) - \mathbf{l}(0.5)|$

Midpoint-test subdivision

$$|\mathbf{f}(u_{mid}) - \mathbf{l}(0.5)|$$

29

Drawing Curves

- Midpoint-test subdivision
 - Not perfect
 - We need more information for a guarantee...

31

Filled Polygons

- "Equality Removal" applies to all vertices
- \circ Both x and y coordinates

41

Filled Polygons

• Final result:

• Who does this pixel belong to?

Flood Fill

4

Flood Fill

