CS-184: Computer Graphics

Lecture #1: Introduction, Overview, and Image Basics

Prof. James O'Brien University of California, Berkeley

V2006S-01-13

Today

- Introduction and Course Overview
- Homeworks #0 and #1
- Digital Images

- 2

The Subject: Computer Graphics

• Computer Graphics:

Using computers to generate and display images

- Issues that arise:
 - Modeling
 - Rendering
 - Animation
 - Perception
 - Lots of details...

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - Others...

From Star Wars Episode 1, Lucasfilm Ltd.

m Ltd.

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

From Finding Nemo, Pixar Animation Studios

6

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - $\circ \ Simulation$
 - Analysis
 - Design
 - Others...

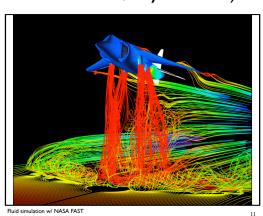
Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - $\circ \ Analysis \\$
 - Design
 - Others...

From America's Army

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - Others...


Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - Others...

Course Topics

- Image representation and manipulation
- 2D and 3D drawing algorithms
- Object representations
- Rendering
- Animation
- Interaction techniques

People

Prof. James O'Brien

Email: job@eecs.berkeley.edu Office hours: Fridays 2:00-4:00pm Office location: 633 Soda Hall

Adam Kirk

Email: akirk@eecs.berkeley.edu

Office hours: Monday/Wednesday 2:30-3:30 Office hours location: 751 Soda Hall

TBA

Send class related email to cs184@imail.eecs.berkeley.edu

13

Computing Resources

- Class accounts handed out next week
- New lab with Power Mac G5s
- Can also use other labs (Linux or Windows)

Contact Information

- Class web site:
 - http://inst.eecs.berkeley.edu/~cs184
 - Handouts assignments, etc. will beposted there
 - Lecture notes posted there (hopefully) before classes
- News group:
 - ucb.class.cs I 84
 - Not reading newsgroup... bad idea
- Email addresses on previous page...

-

Text Book

- Fundamentals of Computer Graphics
 by Peter Shirley
 - * Get the current version!
- Also handouts and other supplemental material will be provided
- See other books listed in course information handout

1:

Grading

• Assignments: 30%

Mix of written and programing

Average I or 2 weeks to do them

Final Project: 30%

∘ Midterm: 20%

• Final: 20%

Dates in course handout

Check now for conflicts!

Prerequisites

- You must know how to program C or C++
 - Big final project, several programing assignments
 - No hand holding
- Data structures (CS60C)
- Math: linear algebra, calc, trig

18

Waitlist

• Relax for now...

Class Participation

- Reasons to participate
 - More fun for me and you
 - You learn more
 - I won't give stupid little annoying quizzes in class
- How to participate
 - Ask questions
 - Make comments
- Stupid questions/comments
 - That's okay

Homeworks #0 and #1

- Homework #0
 - Setup CS184 account and let us know who you are
 - Do this ASAP (after you get the account sheet)
- Homework #1
 - Due (see handout)
 - Tests math prerequisites

21

Academic Honesty

- If you use an external resource cite it clearly!
- Don't do things that would be considered dishonest... if in doubt ask.
- Cheating earns you:
 - An 'F' in the class and
 - \circ Getting reported to the University
 - No exceptions.

22

Questions?

Images

- Something that represents a pattern of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

23

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

25

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

26

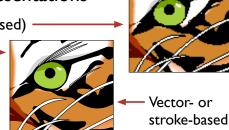
Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

Images


 Something that represents a patten of light that will be perceived by something

Computer representations


Sampled (pixel based)

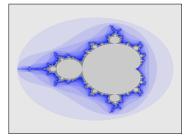
Object based -

• Functional

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

Well, this used to be in an object based representation...



Okan Arikan

29

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

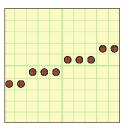
Mandelbrot Fractal Plot by Vincent Stahl

20

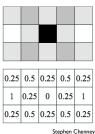
Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

Function→Polygons→Pixels

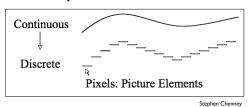

Think about making edits...

"Spiral Crossed" by Sandor Kaba


Storing Images

- Object and Function representations basically arbitrary ...later...
- Raster Images
 - 2D array of memory
 - Pixels store different things
 - Intensity
 - RGB color
 - Depth
 - o Others...
 - May be mapped to special HW

Storing Images


- Object and Function representations basically arbitrary ...later...
- Raster Images
 - 2D array of memory
 - Pixels store different things
 - Intensity (scalar value, e.g. float, int)
 - RGB color (vector value)
 - Depth
 - o Others...
 - May be mapped to special HW

Stephen Chemiey

Discretization

- Real world and "object" representations are continuous.
- Raster images have discrete pixel locations and discrete pixel values

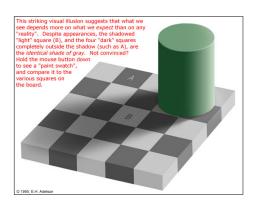
We will see problems from this soon...


3

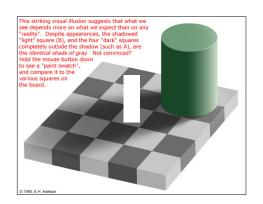
High Dynamic Range Images

High Dynamic Range Images

- Dynamic range of the human eye >> range of standard monitors
- Eye adjusts as we look around

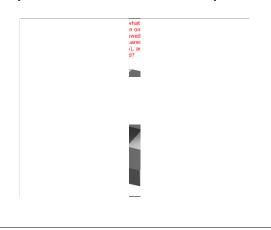


Paul Debevec and litenrda Malik


Perception

• The eye does not see intensity values...

Perception


• The eye does not see intensity values...

31

Perception

• The eye does not see intensity values...

Storing Images

- Digital file formats
 - TIFF, JPEG, PNG, GIF, BMP, PPM, etc. ...
 - Compression (lossless and lossy)
 - Interlaced (e.g. NTSC television)
 - Tend to be complex... use libraries
- Mapping to memory