CS-184: Computer Graphics

Lecture \#I5: Natural Splines, B-Splines, and NURBS

Prof. James O'Brien University of California, Berkeley

Natural Splines

- Draw a "smooth" line through several points

A real draftsman's spline.

Image from Carl de Boor's webpage.

Natural Cubic Splines

- Given $n+1$ points
- Generate a curve with n segments
- Curves passes through points
- Curve is C^{2} continuous
- Use cubics because lower order is better...

Natural Cubic Splines

$$
\mathbf{x}(u)= \begin{cases}\mathbf{s}_{1}(u) & \text { if } 0 \leq u<1 \\ \mathbf{s}_{2}(u-1) & \text { if } 1 \leq u<2 \\ \mathbf{s}_{3}(u-2) & \text { if } 2 \leq u<3 \\ & \vdots \\ \mathbf{s}_{n}(u-(n-1)) & \text { if } n-1 \leq u \leq n\end{cases}
$$

Natural Cubic Splines

$$
\begin{array}{lll}
s_{i}(0)=p_{i-1} & i=1 \ldots n & \leftarrow n \text { constraints } \\
s_{i}(1)=p_{i} & i=1 \ldots n & \leftarrow n \text { constraints }
\end{array}
$$

$$
s_{i}^{\prime}(1)=s_{i+1}^{\prime}(0) \quad i=1 \ldots n-1 \quad \leftarrow n-1 \text { constraints }
$$

$$
s_{i}^{\prime \prime}(1)=s_{i+1}^{\prime \prime}(0) \quad i=1 \ldots n-1 \quad \leftarrow n-1 \text { constraints }
$$

$$
s_{1}^{\prime \prime}(0)=s_{n}^{\prime \prime}(1)=0
$$

$\leftarrow 2$ constraints

Natural Cubic Splines

- Interpolate data points
- No convex hull property
- Non-local support
- Consider matrix structure...
- C^{2} using cubic polynomials

B-Splines

- Goal: C^{2} cubic curves with local support
- Give up interpolation
- Get convex hull property
- Build basis by designing "hump" functions

B-Splines

$b_{-2}^{\prime \prime}\left(u_{-2}\right)=b_{-2}^{\prime}\left(u_{-2}\right)=b_{-2}\left(u_{-2}\right)=0 \quad \leftarrow 3$ constraints
$b^{\prime \prime}\left(u_{+2}\right)=b^{\prime}\left(u_{+2}\right)=b_{+2}\left(u_{+2}\right)=0 \quad \leftarrow 3$ constraints
$b_{+2}^{\prime \prime}\left(u_{+2}\right)=b_{+2}^{\prime}\left(u_{+2}\right)=b_{+2}\left(u_{+2}\right)=0 \quad \leftarrow 3$ constraints
$b_{-2}\left(u_{-1}\right)=b_{-1}\left(u_{-1}\right)$
$b_{-1}\left(u_{0}\right)=b_{+1}\left(u_{0}\right)$
$b_{+1}\left(u_{+1}\right)=b_{+2}\left(u_{+1}\right)$$\leftarrow\left[\begin{array}{c}\text { Repeat for } b^{\prime} \text { and } b^{\prime \prime} \\ 3 \times 3=9 \text { constraints }\end{array}\right.$
$b_{+1}\left(u_{+1}\right)=b_{+2}\left(u_{+1}\right) \quad[3 \times 3=9$ constraints

B-Splines

$$
\mathbf{b}(u)= \begin{cases}\mathbf{b}_{-\mathbf{2}}(u) & \text { if } u_{-2} \leq u<u_{-1} \\ \mathbf{b}_{-\mathbf{1}}(u) & \text { if } u_{-1} \leq u<u_{0} \\ \mathbf{b}_{+\mathbf{1}}(u) & \text { if } u_{0} \leq u<u_{+1} \\ \mathbf{b}_{+\mathbf{2}}(u) & \text { if } u_{+1} \leq u \leq u_{+2}\end{cases}
$$

$b_{-2}^{\prime \prime}\left(u_{-2}\right)=b_{-2}^{\prime}\left(u_{-2}\right)=b_{-2}\left(u_{-2}\right)=0 \quad \leftarrow 3$ constraints
$b_{+2}^{\prime \prime}\left(u_{+2}\right)=b_{+2}^{\prime}\left(u_{+2}\right)=b_{+2}\left(u_{+2}\right)=0 \quad \leftarrow 3$ constraints
$b_{-2}\left(u_{-1}\right)=b_{-1}\left(u_{-1}\right)$
$b_{-1}\left(u_{0}\right)=b_{+1}\left(u_{0}\right)$
$b_{+1}\left(u_{+1}\right)=b_{+2}\left(u_{+1}\right)$$\leftarrow\left[\begin{array}{c}\text { Repeat for } b^{\prime} \text { and } b^{\prime \prime} \\ 3 \times 3=9 \text { constraints }\end{array}\right.$
$b_{-2}\left(u_{-2}\right)+b_{-1}\left(u_{-1}\right)+b_{+1}\left(u_{0}\right)+b_{+2}\left(u_{+1}\right)=1 \leftarrow 1$ constraint (convex hull)

B-Splines

- Build a curve w/ overlapping bumps
 - Continuity

- Inside bumps C^{2}
- Bumps "fade out" with C^{2} continuity
- Boundaries
- Circular
- Repeat end points
- Extra end points

B-Splines

- Notation
- The basis functions are the $b_{i}(u)$
- "Hump" functions are the concatenated function
- Sometimes the humps are called basis... can be confusing
- The u_{i} are the knot locations
- The weights on the hump/basis functions are control points

B-Splines

- Similar construction method can give higher continuity with higher degree polynomials
- Repeating knots drops continuity
- Limit as knots approach each other
- Still cubics, so conversion to other cubic basis is just a matrix multiplication

B-Splines

- Geometric construction
- Due to Cox and de Boor
- My own notation, beware if you compare w/ text
- Let hump centered on u_{i} be $N_{i, 4}(u)$ Cubic is order 4
$N_{i, k}(u) \quad$ Is order k hump, centered at u_{i}
Note: i is integer if k is even else $(i+1 / 2)$ is integer

B-Splines

NURBS

- Nonuniform Rational B-Splines

- Basically B-Splines using homogeneous coordinates
- Transform under perspective projection
- A bit of extra control

NUBRS

$$
\mathbf{p}_{i}=\left[\begin{array}{c}
p_{i x} \\
p_{i y} \\
p_{i z} \\
p_{i w}
\end{array}\right] \quad \mathbf{x}(u)=\frac{\sum_{i}\left[\begin{array}{c}
p_{i x} \\
p_{i y} \\
p_{i z}
\end{array}\right] N_{i}(u)}{\sum_{i} p_{i w} N_{i}(u)}
$$

- Non-linear in the control points
- The $p_{i w}$ are sometimes called "weights"

