
CS-184: Computer Graphics

Lecture #21: More Motion Capture

Prof. James O’Brien

University of California, Berkeley

V2005F-21-1.0

2

Today

More Motion Capture

3

Motion Graphs

Hand build motion graphs often used in
games

Significant amount of work required

Limited transitions by design

Motion graphs can also be built
automatically

Transition Graphs

Flip

Stand

Run

Walk

Sit

Trip

Dance

4

Motion Graphs

Similarity metric

Measurement of how similar two frames of motion are

Based on joint angles or point positions

Must include some measure of velocity

Ideally independent of capture setup and skeleton

Capture a “large” database of motions

5

Motion Graphs

Compute similarity metric between all pairs
of frames

Maybe expensive

Preprocessing step

There may be too many good edges

To appear in the ACM SIGGRAPH conference proceedings

2. The motion should not penetrate any objects in the environ-
ment.

3. The body should be at a particular position and orientation at
a particular time.

4. A particular joint should be at a particular position (and
maybe having a specific velocity) at a specific time.

5. The motion should have a specified style (such as happy or
energetic) at a particular time.

Finding paths in the motion graph that satisfy the hard con-
straints and optimize soft constraints involves a graph search. Un-
fortunately, for even a small collection of motions, the graph G has
a large number of edges and straightforward search of this graph is
computationally prohibitive. The main reason is the need to enu-
merate many paths. There are, in general, many perfectly satisfac-
tory motions that satisfy the constraints equally well. For example,
if we require only that the person be at one end of a room at frame 0
and near the other end at frame 5000, unless the room is very large,
there are many motions that satisfy these constraints.

4 Randomized Search

The motion graph is too hard to search with dynamic programming
as there are many valid paths that satisfy the constraints equally
well. There may be substantial differences between equally valid
paths — in the example above, whether you dawdle at one side of
the room or the other is of no significance. This suggests summa-
rizing the graph to a higher level and coarser presentation that is
easier to search. Branch and bound algorithms are of no help here,
because very little pruning is possible.

In order to search the graph G in practical times, we need to do
the search at a variety of levels where we do the large scale mo-
tion construction first and then “tweak” the details so that the mo-
tion is continuous and satisfies the constraints as well as possible.
Coarser levels should have less complexity while allowing us to ex-
plore substantially different portions of the path space. In such a
representation, every level is a summary of the one finer level. Let
G′ ← G′′ ← G′′′ ← · · ·← Gn ← G be such a hierarchical represen-
tation where G′ is the coarsest level and G is the finest. We will first
find a path in G′ and then push it down the hierarchy to a path in G
for synthesis.

4.1 Summarizing the Graph

All the edges between two nodes s and t can be represented in a
matrix Pst . The (i, j)’th entry of Pst contains the weight of the
edge connecting si to t j and infinity if there is no such edge. In

the appendix A, we give one natural cost functionC(si, t j) for edge

weights. We now have:

(Pst)i j =
{

C(si, t j) if there is an edge from si to t j
∞ otherwise.

The cost function explained in section A causes the Pmatrices to
have non-infinite entries to form nearly elliptical groups (figure 2).
This is due to the fact that if two frames are similar, most probably
their preceding and succeeding frames also look similar.

In order to summarize the graph, we cluster the edges of G.
We now have G′, whose nodes are the same as the nodes of G,
and whose edges represent clusters of edges of G in terms of their
f romFrame and toFrame labels. We require that, if there is a cut
between two sequences represented by an edge between two nodes
in G, there be at least one edge between the corresponding nodes in

Clustering

Walking , frame i
R

u
n
n
in

g
,
fr

am
e

j

Walking Running
Framei Frame j

Figure 2: Every edge between two nodes representing different mo-
tion clips can be represented as a matrix where the entries corre-
spond to edges. Typically, if there is one edge between two nodes
in our graph, there will be several, because if it is legal to cut from
one frame in the first sequence to another in the second, it will usu-
ally also be legal to cut between neighbors of these frames. This
means that, for each pair of nodes in the graph, there is a matrix
representing the weights of edges between the nodes. The i, j’th
entry in this matrix represents the weight for a cut from the i’th
frame in the first sequence to the j’th frame in the second sequence.
The weight matrix for the whole graph is composed as a collection
of blocks of this form. Summarizing the graph involves compress-
ing these blocks using clustering.

G′. If this were not the case, our summary would rule out potential
paths. In order to insure that this condition holds and because the
graph is very large, we cluster edges connecting every pair of nodes
in G separately. We cluster unconnected edge groups of G from the
P matrices (defined between every pair of nodes) using k-means

[Bishop 1995]. The number of clusters is chosen as
ma joraxislength
minoraxislength

for each group where the axis lengths refer to the ellipse that fits to
the cluster (obtained through Principal Component Analysis).

The nodes of G′ are the same as the nodes of G. The edges con-
necting nodes inG′ are cluster centers for clusters of edges connect-
ing corresponding nodes in G. The centers are computed by taking
the average of the edges in terms of f romFrame, toFrame and cost
values. At this point, every edge in G′ represents many edges in G.
We would like to have a tree of graph representations whose root
is G′, and whose leaves are G. We use k-means clustering to split
each cluster of edges in half at each intermediate level and obtain
a hierarchical representation G′ ← G′′ ← G′′′ ← · · ·← Gn ← G for
the original graph G. This is an instance of Tree-Structured Vector
Quantization [Gersho and Gray 1992].

Thus, in our summarized graph G′, each edge is the root of a
binary tree and represents all the edges in close neighborhood in
terms of the edge labels. Note that the leaf edges are the edges in
the original graph and intermediate edges are the averages of all the
leaf edges beneath them. A path inG represents a sequence of clips;
so does a path in G′, but now the positions of the clip boundaries
are quantized, so there are fewer paths.

4.2 Searching the Summaries

While searching this graph, we would like to be able to generate dif-
ferent alternative motions that achieve the same set of constraints.
During the search, we need to find paths close to optimal solutions
but do not require exact extrema, because they are too hard to find.
This motivates a random search. We used the following search strat-
egy:

3

Arikan and Forsyth, 2002

6

Motion Graphs

Random walks

Start in some part of the graph and randomly make
transitions

Avoid dead ends

Useful for “idling” behaviors

Transitions

Use blending algorithm we discussed

To appear in the ACM SIGGRAPH conference proceedings

Domain of smoothing

Smoothed Signal

Discontinuity Magnitude

0

0.5

Smoothing Function
!0.5

Figure 4: In the synthesized motion, discontinuities in orientation
are inevitable. We deal with these discontinuities using a form of
localized smoothing. At the top left, a discontinuous orientation
signal, with its discontinuity shown at the top right. We now con-
struct an interpolant to this discontinuity, shown on the bottom right
and add it back to the original signal to get the continuous version
shown on the bottom left. Typically, discontinuities in orientation
are sufficiently small that no more complex strategy is necessary.

1. Replace a sequence by selecting two edges ei and ei+ j where

0 ≤ j ≤ n− i, deleting all the edges between them in the
path and connecting the unconnected pieces of the path us-
ing one or two edges in the top level graph G′ (if possible).
Since in the summarized graph, there are relatively fewer
edges, we can quickly find edges that connect the two un-
connected nodes by checking all the edges that go out from
toMotion(ei), and enumerating all the edges that reach to
f romMotion(ei+ j) and generate a valid path. Note that we

enumerate only 0 or 1 hop edges (1 edge or 2 edge connec-
tions respectively).

2. Demoting two edges to their children and replacing them
with one of their children if they can generate a valid path.
Doing this mutation on two edges simultaneously allows us
to compensate for the errors that would happen if only one of
them was demoted.

We check every possible mutation, evaluate them and take the best
few. Since the summary has significantly fewer edges than the orig-
inal graph, this step is not very expensive. If a motion sequence can-
not generate a mutation whose score is lower that itself, we decide
that the current path is a local minimum in the valid path space and
record it as a potential motion. This way, we can obtain multiple
motions that satisfy the same set of constraints.

4.2.3 Creating and Smoothing the Final Path

We create the final motion by taking the frames between
toFrame(ei) and f romFrame(ei+1) from each motion

toMotion(ei) where 1 ≤ i < n (figure 1). This is done by ro-
tating and translating every motion sequence so that each piece
starts from where the previous one ended. In general, at the
frames corresponding to the edges in the path, we will have C0

discontinuities, because of the finite number of motions sampling
an infinite space. In practice these discontinuities are small and
we can distribute them within a smoothing window around the
discontinuity. We do this by multiplying the magnitude of the
discontinuity by a smoothing function and adding the result back to
the signal (figure 4). We choose the smoothing domain to be ±30
frames (or one second of animation) around the discontinuity and

Figure 5: Body constraints allow us to put “checkpoints” on the
motion: in the figure, the arrow on the right denotes the required
starting position and orientation and the arrow on the left is the re-
quired ending position and orientation. All constraints are also time
stamped forcing the body to be at the constraint at the time stamp.
For these two body constraints, we can generate many motions that
satisfy the constraints in real-time.

Figure 6: We can use multiple “checkpoints” in a motion. In this
figure, the motion is required to pass through the arrow (body con-
straint) in the middle on the way from the right arrow to the left.

y(f) =




0 f < d− s
1
2 ∗ (f−d+ss)2 d− s≤ f < d

− 1
2 ∗ (f−d+ss)2 +2∗ (f−d+ss)−2 d ≤ f ≤ d+ s

0 f > d+ s

as the smoothing function that gives the amount of displacement
for every frame f , where d is the frame of the discontinuity and
s if the smoothing window size (in our case 30). To make sure
that we interpolate the body constraints (i.e. having a particular
position/orientation at a particular frame), we take the difference
between the desired constraint state, subtract the state at the time
of the constraint and distribute this difference uniformly over the
portion of the motion before the time of the constraint. Note that
these “smoothing” steps can cause artifacts like feet penetrating or
sliding on the ground. However, usually the errors made in terms
of constraints and the discontinuities are so small that they are un-
noticeable.

4.3 Authoring Human Motions

Using iterative improvements of random paths, we are able to syn-
thesize human looking motions interactively. This allows interac-
tive manipulation of the constraints. This is important, because mo-
tion synthesis is inherently ambiguous as there may be multiple mo-
tions that satisfy the same set of constraints. The algorithm can find
these “local minimum” motions that adhere to the same constraints.
The animator can choose between them or all the different motions

5

7

Motion graphs

Match imposed requirements

Start at a particular location

End at a particular location

Pass through particular pose

Can be solved using dynamic programing

Efficiency issues may require approximate solution

Notion of “goodness” of a solution

8

Motion Graphs

Arikan and Forsyth, 2002

9

Graphs with Annotations

Place semantic labels on motions

Example: walking, running, waving, moving-backward

Use include match to desired annotation in goodness

How to place labels automatically?

Statistical classifiers

10

Graphs with Annotations

Arikan, Forsyth, and O’Brien, 2003

11

Supplementing w/ Simulation

Arikan, Forsyth, and O’Brien, 2005?

12

Retargeting Examples

Gleicher, 1998

13

Footskate Cleanup

Kovar, Schreiner, Gleicher, 2002
(Excerpted)

14

Auto Calibration

Skeletons constrain subjects motion

Recorded motion retains evidence of
constraints

Magnetic system yield simple linear constraints

Optical are nonlinear

53

Automatic Joint Parameter Estimation from Magnetic Motion Capture Data

James F. O’Brien Robert E. Bodenheimer, Jr. Gabriel J. Brostow Jessica K. Hodgins

College of Computing and Graphics, Visualization, and Usability Center

Georgia Institute of Technology

801 Atlantic Drive

Atlanta, GA 30332-0280

e-mail: [obrienj|bobbyb|brostow|jkh]@cc.gatech.edu

Abstract
This paper describes a technique for using magnetic motion

capture data to determine the joint parameters of an articulated
hierarchy. This technique makes it possible to determine limb
lengths, joint locations, and sensor placement for a human sub-
ject without external measurements. Instead, the joint param-
eters are inferred with high accuracy from the motion data ac-
quired during the capture session. The parameters are computed
by performing a linear least squares fit of a rotary joint model to
the input data. A hierarchical structure for the articulated model
can also be determined in situations where the topology of the
model is not known. Once the system topology and joint param-
eters have been recovered, the resulting model can be used to
perform forward and inverse kinematic procedures. We present
the results of using the algorithm on human motion capture data,
as well as validation results obtained with data from a simulation
and a wooden linkage of known dimensions.

Keywords: Animation, Motion Capture, Kinematics, Parame-

ter Estimation, Joint Locations, Articulated Figure, Articulated

Hierarchy.

1 Introduction

Motion capture has proven to be an extremely useful technique

for animating human and human-like characters. Motion cap-
ture data retains many of the subtle elements of a performer’s
style thereby making possible digital performances where the
subject’s unique style is recognizable in the final product. Be-

cause the basic motion is specified in real-time by the subject
being captured, motion capture provides a powerful solution for
applications where animations with the characteristic qualities

of human motion must be generated quickly. Real-time capture
techniques can be used to create immersive virtual environments
for training and entertainment applications.
Although motion capture has many advantages and commer-

cial systems are improving rapidly, the technology has draw-
backs. Both optical and magnetic systems suffer from sensor
noise and require careful calibration[6]. Additionally, measure-

ments such as limb lengths or the offsets between the sensors
and the joints are often required. This information is usually
gathered by measuring the subject in a reference pose, but hand
measurement is tedious and prone to error. It is also impractical

for such applications as location-based entertainment where the
delay and physical contact with a technician would be unaccept-
able.

The algorithm described in this paper addresses the problem
of calibration by automatically computing the joint locations for
an articulated hierarchy from the global transformation matrices
of individual bodies. We take motion data acquired with a mag-

netic system and determine the locations of the subject’s joints

Figure 1: Test subject and generated model. The subject is
wearing the motion capture equipment during a capture ses-
sion; the superimposed skeletal model is generated automat-
ically from the acquired motion capture data. The chest and
pelvis sensors are located on the subject’s back.

and the relative sensor locations without external measurement.

The technique imposes no constraints on the sensor positions
beyond those necessary for accurate capture, nor does it require
the subject to pose in particular configurations. The only re-
quirement is that the data must exercise all degrees of freedom

of the joints if the technique is to return an unambiguous answer.
Figure 1 shows a subject wearing magnetic motion capture sen-
sors and the skeletal model that was generated from the motion

data in an automatic fashion.

Intuitively, the algorithm proceeds by examining the se-
quences of transformation data generated by pairs of sensors
and determining a pair of points (one in the coordinate system
of each sensor) that remain collocated throughout the sequence.

If the two sensors are attached to a pair of objects that are con-
nected by a rotary joint, then a single point, the center of the
joint, fulfills this criterion. Errors such as sensor noise and the

fact that human joints are not perfect rotary joints, prevent an
exact solution. The algorithm solves for a best-fit solution and
computes the residual error that describes how well two bodies
“fit” together. This metric makes it possible to infer the body

hierarchy directly from the motion data by building a minimum

Graphics Interface 2000

15

Auto Calibration

O’Brien, Bodenheimer, Brostow, Hodgins, 2000

16

Auto Calibration

O’Brien, Bodenheimer, Brostow, Hodgins, 2000

17

Auto Calibration

Kirk, O’Brien, and Forsyth, 2005

18

Perception Issues

Motion can be perceived independent of
geometry

“Biological motion stimuli” tests

But geometry does impact motion
perception

HODGINS ET AL.: PERCEPTION OF HUMAN MOTION WITH DIFFERENT GEOMETRIC MODELS 103

!!"!# !!"!$!!"!# !!"!$

Fig. 1. Images of an animated human runner. The pair on the left compares two running mot ions
rendered using a polygonal model. On the right , the samepair of mot ions are rendered with a st ick figure
model. Modificat ions to the mot ion were controlled by a normalized parameter, λ, that varied between
λ = 0 and λ = 1. These images are from the mot ion generated for the addit ive noise test discussed in
Sect ion I I I-C. The di erence in posture created by the addit ive noise can be seen in the increased angle
of the neck and waist in the right image of each pair (λ = 1).

Fig. 2. The dot pat tern on the left shows the joint locat ions of a human runner at a single point in t ime.
On the right , these joint locat ions are shown over the courseof one step in the running cycle. Although it
is di cult to determine the nature of these pat terns from a st ill image, studies show that most people are
able to recognize the mot ion and even to make fine judgments when shown moving sequences of similar
images.

between 1.6 and 2.7 seconds of display, or about two step cycles[22]. Our experiments used
pairs of running st imuli 4 seconds in durat ion that displayed about six st rides. We not iced that
test subjects often marked their answer sheets near themidpoint of the second st imuli which is
consistent with Barclay’s results.
Mot ion is apparent ly essent ial for ident ifying human figureson light-dot displays. TheCutt ing

studies reported that whilemoving light-dot displayswere recognized immediately, st ill light-dot
displays of a walking figure were not recognized as human. Poizner and colleagues also noted
that movement is required for accurately reading American Sign Language gestures[23].
This capacity to recognize moving figures was shown to be robust in the presence of masking

by addit ional light points. In a modified experiment , subjects were shown light-dot displays of
walkers facing either left or right and asked to determinewalking direct ion. Only complex masks
of extraneous light dotsmoving in pat terns that were similar to those of thewalking figurewere
able to disrupt viewer judgments[24].
Appropriate synthet ic movements are easily accepted as human when rendered as light-dot

displays. Cut t ing and colleagues found that apparent torso structure and rotat ion were strongly

19

Perception Issues

20

Suggested Reading

Retargeting motion to new characters, Gleicher, SIGGRAPH 98

Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher,
SCA 2002.

Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH
2002.

Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.

Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.

Automatic Joint Parameter Estimation from Magnetic Motion Capture Data,
O'Brien, Bodenheimer, Brostow, and Hodgins, GI 2000.

Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien,
and Forsyth, CVPR 2005.

Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien,
and Tumblin, IEEE: TVCG 1998.

