CS-184: Computer Graphics

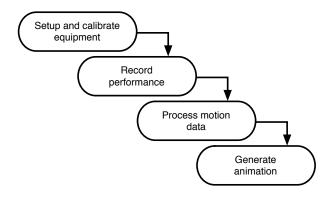
Lecture #20: Motion Capture

Prof. James O'Brien University of California, Berkeley

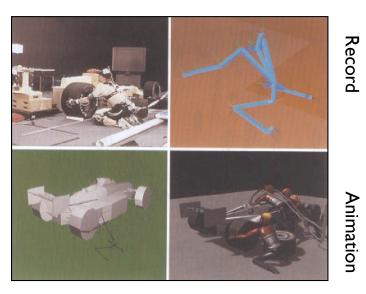
V2005-F20-1.0

Today

• Motion Capture


Motion Capture

- Record motion from physical objects
- Use motion to animate virtual objects


Simplified Pipeline:

Setup

Process

Basic Pipeline

From Rose, et al., 1998

,

What types of objects?

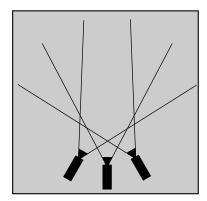
- Human, whole body
- Portions of body
- Facial animation
- Animals
- Puppets
- Other objects

4

Capture Equipment

- Passive Optical
 - Reflective markers
 - IR (typically) illumination
 - Special cameras
 - \circ Fast, high res., filters
 - Triangulate for positions

Images from Motion Analysis



Capture Equipment

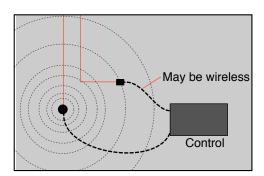
Passive Optical Advantages

- Accurate
- May use many markers
- No cables
- High frequency
- Disadvantages
 - Requires lots of processing
 - Expensive systems
 - Occlusions
 - Marker swap
 - Lighting / camera limitations

7

Capture Equipment

- Active Optical
 - Similar to passive but uses LEDs
 - Blink IDs, no marker swap
 - Number of markers trades off w/ frame rate

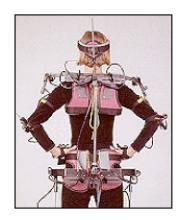

Phoenix Technology

Phase Space

Capture Equipment

- Magnetic Trackers
 - Transmitter emits field
 - Trackers sense field
 - Trackers report position and orientation

9


Capture Equipment

- Electromagnetic Advantages
 - 6 DOF data
 - No occlusions
 - Less post processing
 - Cheaper than optical
- Disadvantages
 - Cables
 - Problems with metal objects
 - Low(er) frequency
 - Limited range
 - Limited number of trackers

Capture Equipment

• Electromechanical

Analogus

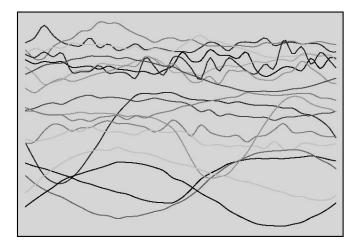
11

Capture Equipment

Puppets

Digital Image Design

Performance Capture

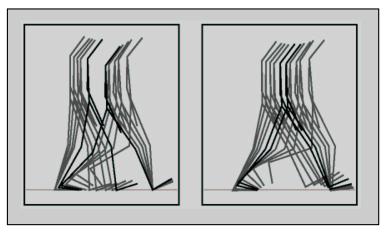

- Many studios regard Motion Capture as evil
 - Synonymous with low quality motion
 - No directive / creative control
 - Cheap
- o Performance Capture is different
 - Use mocap device as an expressive input device
 - Similar to digital music and MIDI keyboards

13

Manipulating Motion Data

- Basic tasks
 - Adjusting
 - Blending
 - Transitioning
 - Retargeting
- Building graphs

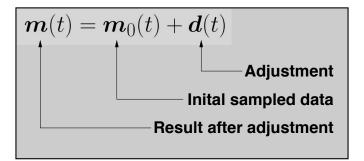
Nature of Motion Data


Witkin and Popovic, 1995

Subset of motion curves from captured walking motion.

15

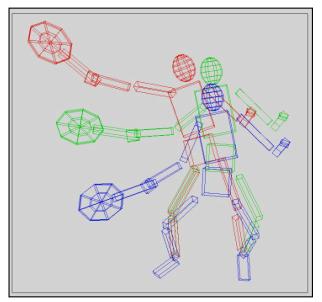
Adjusting


 \circ IK on single frames will not work

Gleicher, SIGGRAPH 98

Adjusting

Define desired motion function in parts

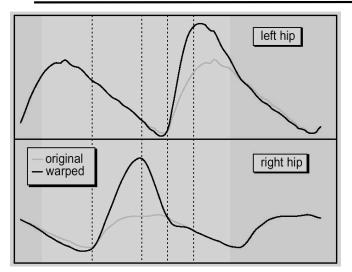


17

Adjusting

- Select adjustment function from "some nice space"
 - Example C2 B-splines
- Spread modification over reasonable period of time
 - \circ User selects support radius

Adjusting


IK uses control points of the B-spline now

Example:
position racket
fix right foot
fix left toes
balance

Witkin and Popovic SIGGRAPH 95

19

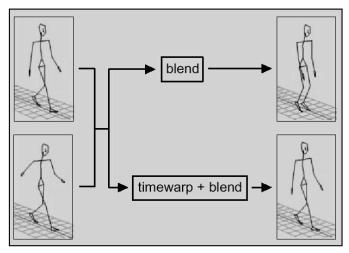
Adjusting

Witkin and Popovic SIGGRAPH 95

What if adjustment periods overlap?

Blending

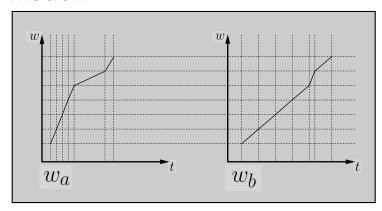
 Given two motions make a motion that combines qualities of both


$$\boldsymbol{m}_{\alpha}(t) = \alpha \boldsymbol{m}_{a}(t) + (1 - \alpha) \boldsymbol{m}_{b}(t)$$

- Assume same DOFs
- Assume same parameter mappings

21

Blending


• Consider blending slow-walk and fast-walk

Bruderlin and Williams, SIGGRAPH 95

Blending

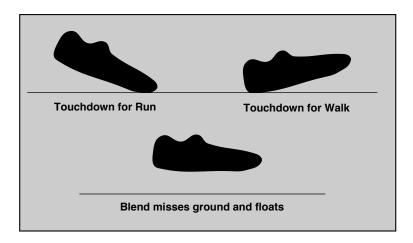
 Define timewarp functions to align features in motion

Normalized time is w

23

Blending

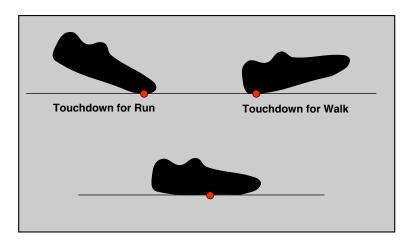
• Blend in normalized time


$$\boldsymbol{m}_{\alpha}(w) = \alpha \boldsymbol{m}_{a}(w_{a}) + (1-\alpha)\boldsymbol{m}_{b}(w_{b})$$

• Blend playback rate

$$\frac{\mathrm{d}t}{\mathrm{d}w} = \alpha \frac{\mathrm{d}t}{\mathrm{d}w_a} + (1 - \alpha)\alpha \frac{\mathrm{d}t}{\mathrm{d}w_b}$$

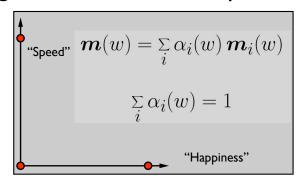
Blending


 Blending may still break features in original motions

25

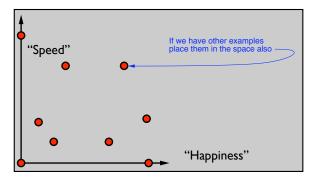
Blending

- Add explicit constrains to key points
 - Enforce with IK over time


Blending / Adjustment

- Short edits will tend to look acceptable
- Longer ones will often exhibit problems
- Optimize to improve blends / adjustments
 - Add quality metric on adjustment
 - Minimize accelerations / torques
 - Explicit smoothness constraints
 - Other criteria...

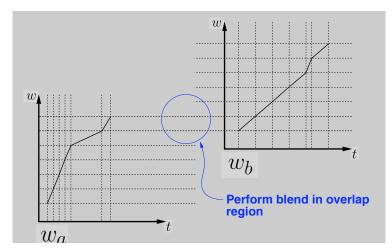
2


Multivariate Blending

Extend blending to multivariate interpolation

Multivariate Blending

Extend blending to multivariate interpolation

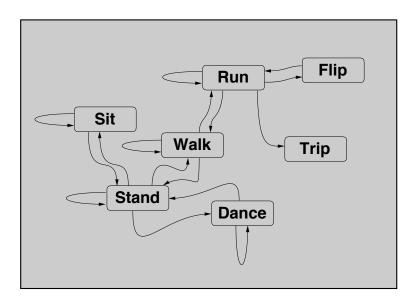


Use standard scattered-data interpolation methods

29

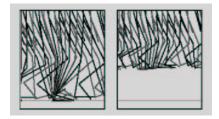
Transitions

• Transition from one motion to another



Cyclification

- Special case of transitioning
- Both motions are the same
- Need to modify beginning and end of a motion simultaneously


31

Transition Graphs

Retargeting

Adapt motion from one character to another

From Gleicher, SIGGRAPH 1998

33

Suggested Reading

- Fourier principles for emotion-based human figure animation, Unuma, Anjyo, and Takeuchi, SIGGRAPH 95
- Motion signal processing, Bruderlin and Williams, SIGGRAPH 95
- Motion warping, Witkin and Popovic, SIGGRAPH 95
- Efficient generation of motion transitions using spacetime constrains, Rose et al., SIGGRAPH 96
- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Verbs and adverbs: Multidimensional motion interpolation, Rose, Cohen, and Bodenheimer, IEEE: Computer Graphics and Applications, v. 18, no. 5, 1998