CS-184: Computer Graphics

Lecture #19: Forward and Inverse Kinematics

Prof. James O'Brien University of California, Berkeley

V2005-19-1.0

Administrative

• Assignment #4 due April 14th

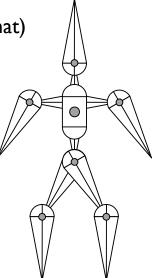
Today

- Forward kinematics
- Inverse kinematics
 - Pin joints
 - Ball joints
 - Prismatic joints

3

Forward Kinematics

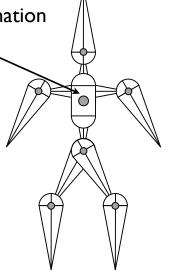
- Articulated skeleton
 - Topology (what's connected to what)
 - Geometric relations from joints
 - Independent of display geometry
 - Tree structure
 - Loop joints break "tree-ness"



Root body

Position set by "global" transformation

- Root joint
 - Position
 - Rotation
- Other bodies relative to root
- Inboard toward the root
- Outboard away from root

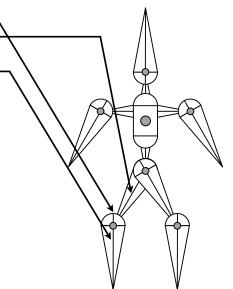


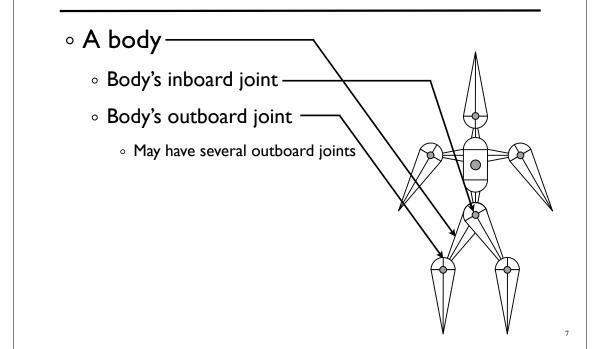
Forward Kinematics

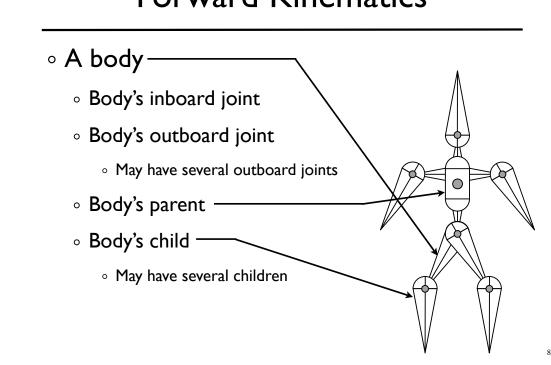
• A joint

• Joint's inboard body -

Joint's outboard body

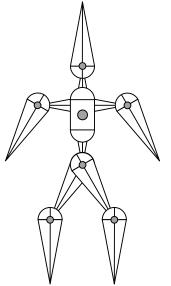






Interior joints

- Typically not 6 DOF joints
- Pin rotate about one axis
- Ball arbitrary rotation
- Prism translation along one axis /

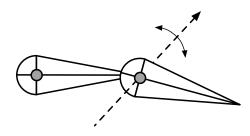


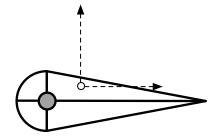
9

Forward Kinematics

• Pin Joints

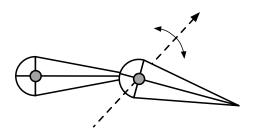
- Translate inboard joint to local origin
- Apply rotation about axis
- Translate origin to location of joint on outboard body

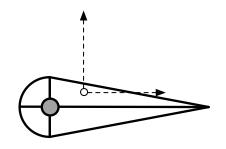




Ball Joints

- Translate inboard joint to local origin
- Apply rotation about arbitrary axis
- \circ Translate origin to location of joint on outboard body



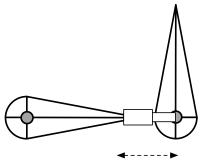


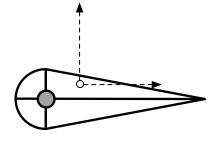
11

Forward Kinematics

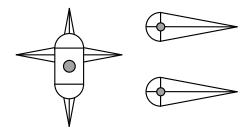
• Prismatic Joints

- Translate inboard joint to local origin
- Translate along axis
- Translate origin to location of joint on outboard body





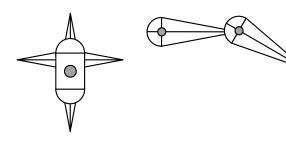
Composite transformations up the hierarchy



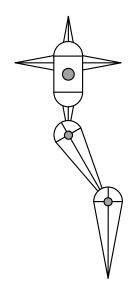
13

Forward Kinematics

Composite transformations up the hierarchy



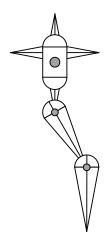
Composite transformations up the hierarchy



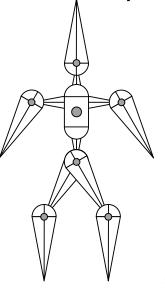
15

Forward Kinematics

Composite transformations up the hierarchy



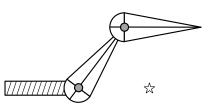
Composite transformations up the hierarchy

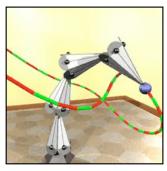


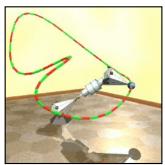
17

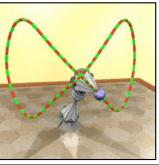
Inverse Kinematics

- Given
 - Root transformation
 - Initial configuration
 - Desired end point location
- Find
 - \circ Interior parameter settings







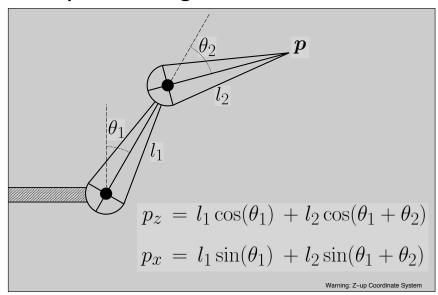


Egon Pasztor

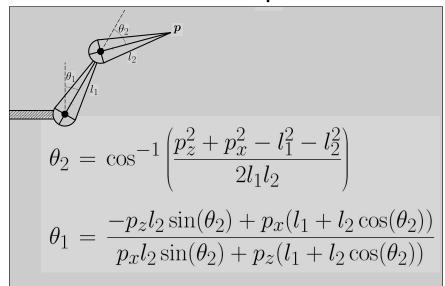
1

Inverse Kinematics

 \circ A simple two segment arm in 2D



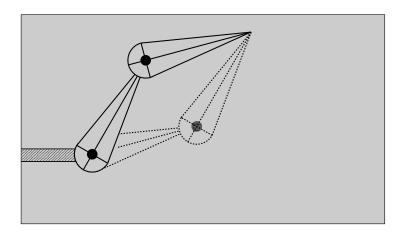
Direct IK: solve for the parameters



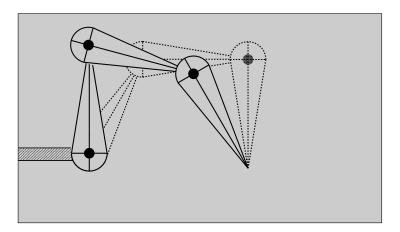
2

Inverse Kinematics

- Why is the problem hard?
 - Multiple solutions separated in configuration space

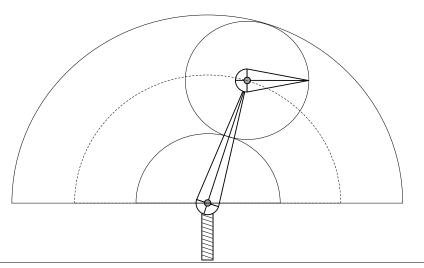


- Why is the problem hard?
 - Multiple solutions connected in configuration space



Inverse Kinematics

- Why is the problem hard?
 - Solutions may not always exist



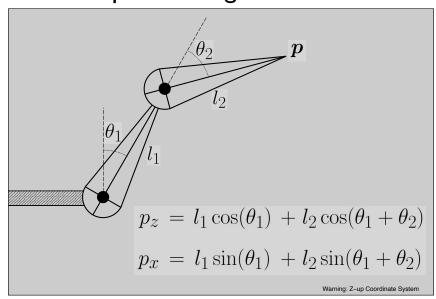
Numerical Solution

- Start in some initial configuration
- Define an error metric (e.g. goal pos current pos)
- Compute Jacobian of error w.r.t. inputs
- Apply Newton's method (or other procedure)
- Iterate...

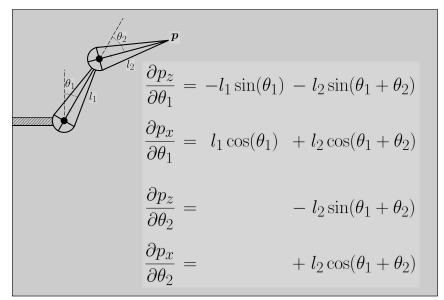
25

Inverse Kinematics

• Recall simple two segment arm:

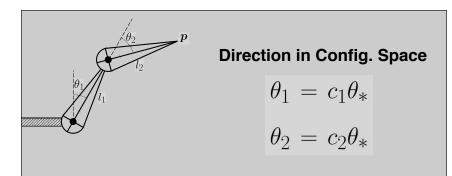


We can write of the derivatives



27

Inverse Kinematics



$$\frac{\partial p_z}{\partial \theta_*} = c_1 \frac{\partial p_z}{\partial \theta_1} + c_2 \frac{\partial p_z}{\partial \theta_2}$$

The Jacobian (of p w.r.t. θ)

$$J_{ij} = \frac{\partial p_i}{\partial \theta_j}$$

Example for two segment arm

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$

29

Inverse Kinematics

The Jacobian (of p w.r.t. θ)

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$

$$\frac{\partial \boldsymbol{p}}{\partial \theta_*} = J \cdot \begin{bmatrix} \frac{\partial \theta_1}{\partial \theta_*} \\ \frac{\partial \theta_2}{\partial \theta_*} \end{bmatrix} = J \cdot \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

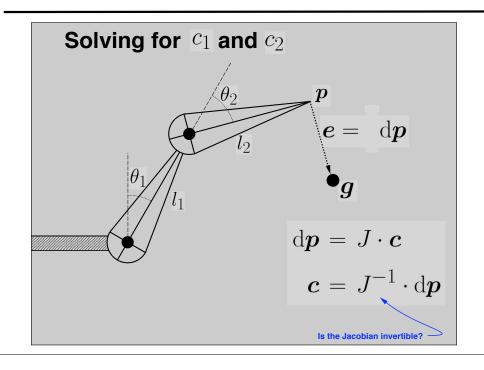
Solving for c_1 and c_2

$$oldsymbol{c} = egin{bmatrix} c_1 \ c_2 \end{bmatrix} \qquad \mathrm{d} oldsymbol{p} = egin{bmatrix} \mathrm{d} p_z \ \mathrm{d} p_x \end{bmatrix}$$

$$\mathbf{d}\boldsymbol{p} = J \cdot \boldsymbol{c}$$
$$\boldsymbol{c} = J^{-1} \cdot \mathbf{d}\boldsymbol{p}$$

31

Inverse Kinematics



Problems

- Jacobian may (will!) not always be invertible
 - Use pseudo inverse (SVD)
 - Robust iterative method
- Jacobian is not constant

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix} = J(\theta)$$

• Nonlinear optimization, but problem is (mostly) well behaved

2

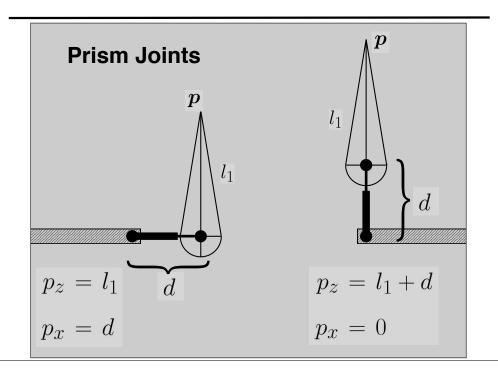
Inverse Kinematics

- More complex systems
 - More complex joints (prism and ball)
 - More links
 - Other criteria (COM or height)
 - Hard constraints (joint limits)
 - Multiple criteria and multiple chains

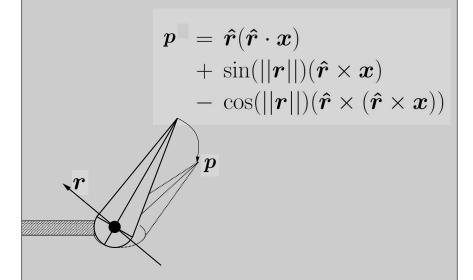
- Some issues
 - o How to pick from multiple solutions?
 - Robustness when no solutions
 - Contradictory solutions
 - Smooth interpolation
 - Interpolation aware of constraints

35

Inverse Kinematics



Ball Joints



37

Inverse Kinematics

Ball Joints (moving axis)

$$\mathrm{d} oldsymbol{p} = [\mathrm{d} oldsymbol{r}] \cdot e^{[oldsymbol{r}]} \cdot oldsymbol{x} = [\mathrm{d} oldsymbol{r}] \cdot \mathrm{d} oldsymbol{r}$$

That is the Jacobian for this joint

$$[m{r}] = egin{bmatrix} 0 & -r_3 & r_2 \ r_3 & 0 & -r_1 \ -r_2 & r_1 & 0 \end{bmatrix}$$
 $[m{r}] \cdot m{x} = m{r} imes m{x}$

Ball Joints (fixed axis)

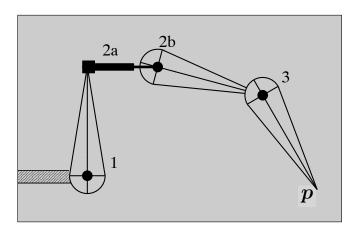
$$\mathrm{d} \boldsymbol{p} = (\mathrm{d} \theta)[\hat{\boldsymbol{r}}] \cdot \boldsymbol{x} = -\underline{[\boldsymbol{x}] \cdot \hat{\boldsymbol{r}}} \mathrm{d} \theta$$

That is the Jacobian for this joint -

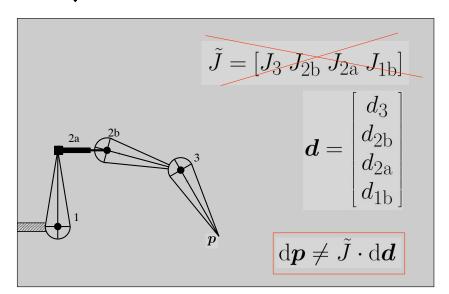
39

Inverse Kinematics

- Many links / joints
 - Need a generic method for building Jacobian



Can't just concatenate individual matrices



4

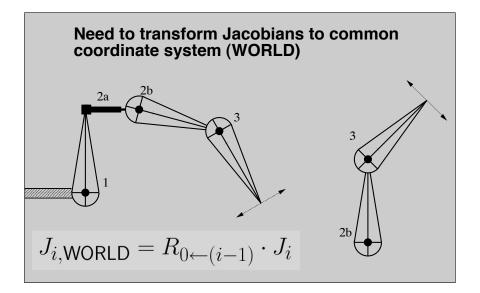
Inverse Kinematics

Transformation from body to world

$$X_{0 \leftarrow i} = \prod_{j=1}^{i} X_{(j-1) \leftarrow j} = X_{0 \leftarrow 1} \cdot X_{1 \leftarrow 2} \cdots$$

Rotation from body to world

$$R_{0 \leftarrow i} = \prod_{j=1}^{i} R_{(j-1) \leftarrow j} = R_{0 \leftarrow 1} \cdot R_{1 \leftarrow 2} \cdots$$



43

Inverse Kinematics

$$J = egin{bmatrix} R_{0 \leftarrow 2\mathrm{b}} \cdot J_3(heta_3, oldsymbol{p_3}) & T \ R_{0 \leftarrow 2\mathrm{a}} \cdot J_{2\mathrm{b}}(heta_{2\mathrm{b}}, X_{2\mathrm{b} \leftarrow 3} \cdot oldsymbol{p_3}) & R_{0 \leftarrow 1} \cdot J_{2\mathrm{a}}(heta_{2\mathrm{a}}, X_{2\mathrm{a} \leftarrow 3} \cdot oldsymbol{p_3}) & J_1(heta_1, X_{1 \leftarrow 3} \cdot oldsymbol{p_3}) & Note: Each row in the above should be transposed.... & Should be transposed..... & Should be transposed.... & Should be transposed....$$

Suggested Reading

- Advanced Animation and Rendering Techniques by Watt and Watt
 - Chapters 15 and 16