
Event Driven
Programming

Allows for interactivity

“Register” “callbacks” with the graphics
system

Two event types: input & system

Input Event Callback request User callback function prototype (return void)

Mouse button glutMouseFunc myMouse(int b, int s, int x, int y)

Mouse motion glutPassiveMotionFunc myMotion(int x, int y)

Keyboard key glutKeyboardFunc myKeyboard(unsigned char c, int x, int y)

System Event Callback request User callback function prototype (return void)

(Re)display glutDisplayFunc myDisplay()

(Re)size window glutReshapeFunc myReshape(int w, int h)

Timer event glutTimerFunc myTimer(int id)

Idle event glutIdleFunc myIdle()

Table 2: Common callbacks and the associated registration functions.

Typical Callback Setup

int main(int argc, char** argv)

{

...

glutDisplayFunc(myDraw); // set up the callbacks

glutReshapeFunc(myReshape);

glutMouseFunc(myMouse);

glutKeyboardFunc(myKeyboard);

glutTimerFunc(20, myTimeOut, 0); // (see below)

...

}

wait (an unsigned int), the user’s callback function, and an integer identifier. The identifier is useful if there

are multiple timer callbacks requested (for different times in the future), so the user can determine which one

caused this particular event.

Callback Functions: What does a typical callback function do? This depends entirely on the application that you are

designing. Some examples of general form of callback functions is shown below.

Examples of Callback Functions for System Events

void myDraw() { // called to display window

// ...insert your drawing code here ...

}

void myReshape(int w, int h) { // called if reshaped

windowWidth = w; // save new window size

windowHeight = h;

// ...may need to update the projection ...

glutPostRedisplay(); // request window redisplay

}

void myTimeOut(int id) { // called if timer event

// ...advance the state of animation incrementally...

glutPostRedisplay(); // request redisplay

glutTimerFunc(20, myTimeOut, 0); // request next timer event

}

Note that the timer callback and the reshape callback both invoke the function glutPostRedisplay(). This proce-

dure informs OpenGL that the state of the scene has changed and should be redrawn (by calling your drawing

procedure). This might be requested in other callbacks as well.

Note that each callback function is provided with information associated with the event. For example, a reshape

Lecture Notes 12 CMSC 427

Glut Calls

glutInit(int*, char**): probably the first call
of your program, takes argc & argv

glutInitDisplayMode(): initializes the frame
buffer

Display Mode Meaning

GLUT RGB Use RGB colors

GLUT RGBA Use RGB plus α (for transparency)
GLUT INDEX Use colormapped colors (not recommended)

GLUT DOUBLE Use double buffering (recommended)

GLUT SINGLE Use single buffering (not recommended)

GLUT DEPTH Use depth buffer (needed for hidden surface removal)

Table 1: Arguments to glutInitDisplayMode().

.

Color: First off, we need to tell the system how colors will be represented. There are three methods, of which

two are fairly commonly used: GLUT RGB or GLUT RGBA. The first uses standard RGB colors (24-bit

color, consisting of 8 bits of red, green, and blue), and is the default. The second requests RGBA coloring.

In this color system there is a fourth component (A or α), which indicates the opaqueness of the color (1 =
fully opaque, 0 = fully transparent). This is useful in creating transparent effects. We will discuss how this

is applied later this semester.

Single or Double Buffering: The next option specifies whether single or double buffering is to be used,GLUT SINGLE

or GLUT DOUBLE, respectively. To explain the difference, we need to understand a bit more about how

the frame buffer works. In raster graphics systems, whatever is written to the frame buffer is immediately

transferred to the display. (Recall this from Lecture 2.) This process is repeated frequently, say 30–60

times a second. To do this, the typical approach is to first erase the old contents by setting all the pixels

to some background color, say black. After this, the new contents are drawn. However, even though it

might happen very fast, the process of setting the image to black and then redrawing everything produces

a noticeable flicker in the image. Double buffering is a method to eliminate this flicker.

In double buffering, the system maintains two separate frame buffers. The front buffer is the one which

is displayed, and the back buffer is the other one. Drawing is always done to the back buffer. Then

to update the image, the system simply swaps the two buffers. The swapping process is very fast, and

appears to happen instantaneously (with no flicker). Double buffering requires twice the buffer space as

single buffering, but since memory is relatively cheap these days, it is the preferred method for interactive

graphics.

Depth Buffer: One other option that we will need later with 3-dimensional graphics will be hidden surface

removal. This fastest and easiest (but most space-consuming) way to do this is with a special array called a

depth buffer. We will discuss in greater detail later, but intuitively this is a 2-dimensional array which stores

the distance (or depth) of each pixel from the viewer. This makes it possible to determine which surfaces

are closest, and hence visible, and which are farther, and hence hidden. The depth buffer is enabled with

the option GLUT DEPTH. For this program it is not needed, and so has been omitted.

glutInitWindowSize(): This command specifies the desired width and height of the graphics window. The general

form is glutInitWindowSize(int width, int height). The values are given in numbers of pixels.

glutInitPosition(): This command specifies the location of the upper left corner of the graphics window. The

form is glutInitWindowPosition(int x, int y) where the (x, y) coordinates are given relative to the upper left
corner of the display. Thus, the arguments (0, 0) places the window in the upper left corner of the display.
Note that glutInitWindowSize() and glutInitWindowPosition() are both considered to be only suggestions to

the system as to how to where to place the graphics window. Depending on the window system’s policies,

and the size of the display, it may not honor these requests.

glutCreateWindow(): This command actually creates the graphics window. The general form of the command is

glutCreateWindowchar(*title), where title is a character string. Each window has a title, and the argument is

a string which specifies the window’s title. We pass in argv[0]. In Unix argv[0] is the name of the program

(the executable file name) so our graphics window’s name is the same as the name of our program.

Lecture Notes 10 CMSC 427

Glut Calls

glutInitWindowSize(int width, int height):
“suggests” a particular window size

glutInitPosition(int x, int y): “suggests” a
window location

glutCreateWindow(char *): requests creation
of the window. Can’t start doing stuff till
we get notification (via the display callback)
that the window has been created.

The Display Callback

Called upon:
the initial creation of the window
whenever the window is uncovered by the
removal of some overlapping window
whenever your program requests that it
be redrawn (via glutPostRedisplay())

Start by clearing with glClear()

End by swapping buffers glutSwapBuffers()

Drawing Attributes

You can draw in different ways (color, line
thickness, point size), GL uses whatever is
the current style

Functions you might find useful: glColor3f(),
glPointSize(), glLineWidth(), glLineStipple(),
glPolygonStipple()

Other attributes exist and are useful for
shading in 3D.

Drawing Polygons

Specific calls (e.g. glRectf()) exist, but we
get more flexibility with glBegin(mode),
glVertex(), and glEnd()

Limited gl calls allowed in between glBegin()
and glEnd()

5

v
4

v
2

v
1

v

1

0

v
3

GL_LINE_LOOP

v
5

v
2

v

v
6

GL TRIANGLE STRIP

v
5

v
4

v
2

v
1

v
0

v
3

GL_LINE_STRIP

v

0

GL_LINES

v
5

v
4v

3

v
2

v
1

v
0

GL_POINTS

v

v
4

v
3

GL_POLYGON

v
5

v
4v

3

v
2

v
1

v
0

4

v
6

v
3
v
5

v
7

GL QUAD STRIP

v
0

v
1 v

2

v
3 v

4
v
5

v
4

v
2

v
1

v
0

v
3

GL TRIANGLES

v
0 v

1

v
2

v

4

5
v
6

GL TRIANGLE FAN

v
3

v
0 v

1

v
2

v
5

v v

v
5

v
6v

7

GL QUADS

v
3

v
0

v
1 v

2

v
4

Fig. 10: Some OpenGL object definition modes.

or dotted lines (with glLineStipple()). It is also possible to pattern or stipple polygons (with glPolygonStipple()).

When we discuss 3-dimensional graphics we will discuss many more properties that are used in shading and

hidden surface removal.

After drawing the diamond, we change the color to blue, and then invoke glRectf() to draw a rectangle. This

procedure takes four arguments, the (x, y) coordinates of any two opposite corners of the rectangle, in this case
(0.25, 0.25) and (0.75, 0.75). (There are also versions of this command that takes double or int arguments, and
vector arguments as well.) We could have drawn the rectangle by drawing a GL POLYGON, but this form is

easier to use.

Viewports: OpenGL does not assume that you are mapping your graphics to the entire window. Often it is desirable

to subdivide the graphics window into a set of smaller subwindows and then draw separate pictures in each

window. The subwindow into which the current graphics are being drawn is called a viewport. The viewport is

typically the entire display window, but it may generally be any rectangular subregion.

The size of the viewport depends on the dimensions of our window. Thus, every time the window is resized

(and this includes when the window is created originally) we need to readjust the viewport to ensure proper

transformation of the graphics. For example, in the typical case, where the graphics are drawn to the entire

window, the reshape callback would contain the following call which resizes the viewport, whenever the window

is resized.

Setting the Viewport in the Reshape Callback

void myReshape(int winWidth, int winHeight) // reshape window

{

...

glViewport (0, 0, winWidth, winHeight); // reset the viewport

...

}

The other thing that might typically go in themyReshape() function would be a call to glutPostRedisplay(), since

you will need to redraw your image after the window changes size.

The general form of the command is

glViewport(GLint x, GLint y, GLsizei width, GLsizei height),

Lecture Notes 17 CMSC 427

Viewport
Set using glViewPort(int x, int y, int width,
int height)

Defines the part of the window you’ll be
drawing in.

Typically called in the window reshape
callback and usually covers the whole
window

Should probably call glutPostRedisplay() after
changing viewpoirt

A Few Words of Advice
Don’t reinvent the wheel. Use the Standard
Template Library and other tools. If you
need to sort a list, use the STL sort. It will
save you time.

Don’t try to do the whole project at once,
work in small steps so that if you introduce a
bug you can find it.

Get started!!! Maybe try to be able to read
the input file and use openGL to draw the
polygons by monday.

Writing Images

Set up your own “framebuffer”

Fill it

Dump it to a file (ppms are simple, libraries
exist to help you with other formats)

