CS-184: Computer Graphics

Lecture #25: Rigid Body Simulations

Tobias Pfaff 537 Soda (Visual Computing Lab) tpfaff@berkeley.edu

Reminder

• Final project presentations next week!

"Game Physics"

Types of Materials

- Particles
 - Weakly interacting particles for fluids
 - Non-interacting particles for visuals
- Mass-spring Systems
 - Can model elastic ropes, sheets and bodies
 - Simple model, fast
 - Stiffness / discretization difficult to fine tune
 - Stability problems for stiff materials
- Finite Elements
 - Volume discretization of physical elasticity model
 - More stable and controllable, but complex

Rigidity

- All materials are elastic to some extent in reality
- Example: try to model metal bar with high stiffness
 - Will enforce inter object distances
 - Propagate deformation, real behavior in the limit
- Problem: high stiffness means large forces, time step will be tiny to keep things stable

Observation

- High stiffness means: vertices should not move w.r.t. each other
 - Effectively removes degrees of freedom from the system
- Obvious: don't even simulate them in the first place
- New representation: center of mass and orientation
- Need equations of motion for both center of mass and orientation

Complex Dynamics

Bullet Physics Engine / Blender. Video by Phymec

Overview

- Rigid bodies in 2D
 - Orientation
 - Integrating rotational motion
 - Angular momentum
 - Impulses
- Rigid bodies in 3D

Points vs. Rigid Bodies

- For particles:
 - Position **x**
 - Velocity \boldsymbol{v}

- For a rigid body:
 - Position **x**

- ?

- ?

– Velocity \boldsymbol{v}

• Dynamics:

$$\mathbf{v}(t) = \frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t}$$
$$\mathbf{a}(t) = \frac{\mathrm{d}\mathbf{v}(t)}{\mathrm{d}t}$$

- Reference point on body: center of mass
- Continuous:

$$\mathbf{x}_{cm} = \frac{\int \mathbf{x} \rho(x) \mathrm{d}V}{\int \rho(x) \mathrm{d}V}$$

• Discrete:

$$\mathbf{x}_{cm} = \frac{\sum_{i} m_i \mathbf{x}_i}{\sum_{i} m_i}$$

 Center of mass behaves like a mass point with total mass of the body $M = \sum m_i$ $\mathbf{x}_{cm} = \frac{\sum_{i} m_i \mathbf{x}_i}{M}$ $=\frac{\sum_{i}m_{i}\mathbf{v_{i}}}{M}$ \mathbf{v}_{cm} = $\mathbf{a}_{cm} = \frac{\sum_{i} m_i \mathbf{a_i}}{M}$

- Orientation: rotation around center of mass
- Point coordinates relative to center of mass (body space)
- Absolute position (world space)

$$\mathbf{x}_{world} = \mathbf{x}_{cm} + Rot_{\mathbf{r}(t)}(\mathbf{x}_0)$$

- Previously: linear velocity
- Now also: angular velocity
- 3 component vector encoding rate of angular change, and axis of rotation
- Total velocity of a point:

 $\mathbf{v}_i = \mathbf{v}_{cm} + \mathbf{w}_{cm} \times \mathbf{p}_0$

Orientation & Angular Velocity in 2D

- Only rotation around z, so \boldsymbol{w} is a scalar
- E.g. given in radians
- Velocity of a point is given by:

$$\mathbf{v}_i = \begin{pmatrix} -w \ x_{i,y} \\ w \ x_{i,x} \end{pmatrix}$$

• Apply orientation to point with matrix:

$$\operatorname{Rot}_{\alpha} = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix}$$

Points vs. Rigid Bodies

- For particles:
 - Position **x**
 - Velocity \boldsymbol{v}
- Dynamics:

$$\mathbf{v}(t) = \frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t}$$
$$\mathbf{a}(t) = \frac{\mathrm{d}\mathbf{v}(t)}{\mathrm{d}t}$$

- For a rigid body:
 - Position **x**
 - Orientation r
 - Linear velocity ${oldsymbol v}$
 - Angular velocity w
- Dynamics:

-?

Special Case for 2D

• Same as for point masses, e.g., Euler step:

$$\mathbf{x}_{cm} = \mathbf{x}_{cm} + h\mathbf{v}_{cm}$$

$$\mathbf{r}_{cm} = \mathbf{r}_{cm} + h\mathbf{w}_{cm}$$

- Works only because we have 1 axis of rotation
- Later on: conserve angular momentum (not angular velocity)
- How to compute accelerations?

Inertia Tensor in 2D

- Equivalent to mass: "resistance to rotation" Is pre-computed for reference state
- In 2D, using body coordinates:

$$i = \sum_{n} m_n \mathbf{x}_n \cdot \mathbf{x}_n$$

• Example

Inertia Tensor in 2D

- What does *i* look like for these shapes? (Assume equal total mass, and same material density.)
- Or which shape spins more easily when poked?

Example

- Figure skating
 - Starts in normal pose
 - Rotation in plane
 - Moment of inertia is reduced by pulling in arms

Rotational Dynamics

- Mass points are restricted to move perpendicular to their body space position
- Use cross product for projection
- Newton's 2nd law: $\frac{\mathrm{d}}{\mathrm{d}t}(m_i\mathbf{v}_i) = \mathbf{f}_i$
- Newton's 2nd law, restricted:

$$\mathbf{x}_i \times \frac{\mathrm{d}}{\mathrm{d}t}(m_i \mathbf{v}_i) = \mathbf{x}_i \times \mathbf{f}_i$$

Both sides are vectors parallel to actual axis of rotation

Rotational Dynamics

- From before
- Move time derivative

$$\mathbf{x}_{i} \times \frac{\mathrm{d}}{\mathrm{d}t}(m_{i}\mathbf{v}_{i}) = \mathbf{x}_{i} \times \mathbf{f}_{i}$$

$$\mathrm{d} \quad (\mathbf{x}_{i} \cdot \mathbf{v}_{i}) = \mathbf{x}_{i} \times \mathbf{f}_{i}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}_i \times m_i \mathbf{v}_i) = \mathbf{x}_i \times \mathbf{f}_i$$

• For whole body

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{i} (\mathbf{x}_i \times m_i \mathbf{v}_i) = \sum_{i} \mathbf{x}_i \times \mathbf{f}_i$$

• Rename

angular momentum eq. momentum

torque eq. force

Both sides are still vectors parallel to axis of rotation

Newton's 2nd Law for Rotations

- Angular momentum: $\mathbf{L} = \sum \mathbf{x}_i \times m_i \mathbf{v}_i = \mathbf{I} \mathbf{w}$
- Torque $\mathbf{q} = \sum_{i=1}^{i} \mathbf{x}_i \times \mathbf{f}_i$
- Angular version of Newton's 2nd law: $\frac{d}{dt}\mathbf{L} = \mathbf{q}$
- Compute the change of angular velocity over time, for 2D: $\mathbf{w}(t+h) = \mathbf{I}^{-1} \mathbf{L}(t+h)$

$$\mathbf{w}(t+h) = \mathbf{w}(t) + h\mathbf{q}/i$$

Can has Angular Momentum Conservation?

- No external forces = no torque
 - angular momentum is constant

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L} = \mathbf{q}$$

Cats still turn around in mid-air just fine

Can has Angular Momentum Conservation?

Points vs. Rigid Bodies

- For particles:
 - Position **x**
 - Velocity \boldsymbol{v}
- Dynamics:

$$\mathbf{v}(t) = \frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t}$$
$$\mathbf{a}(t) = \frac{\mathrm{d}\mathbf{v}(t)}{\mathrm{d}t}$$

- For a rigid body:
 - Position **x**
 - Orientation *r*
 - Linear velocity ${oldsymbol v}$
 - Angular velocity w
- Angular dynamics:

$$\mathbf{q}(t) = \sum_{i} \mathbf{x}_{i} \times \mathbf{f}_{i}$$
$$\mathbf{w}(t+h) = \mathbf{w}(h) + h\mathbf{q}/i$$

Simulation Algorithm in 2D

Pre-compute:

$$M \leftarrow \sum_{i} m_{i}$$
$$\mathbf{x}_{cm}' \leftarrow \sum_{i} \mathbf{x}_{i}' m_{i} / M$$
$$\mathbf{x}_{i} \leftarrow \mathbf{x}_{i}' - \mathbf{x}_{cm}'$$
$$i \leftarrow \sum_{i} m_{i} \mathbf{x}_{i} \cdot \mathbf{x}_{i}$$

Initialize: $\mathbf{x}_{cm}, \mathbf{v}_{cm}$ \mathbf{r}, \mathbf{L} $\mathbf{w} \leftarrow \mathbf{L}/i$

$$\mathbf{t} \leftarrow \sum_{i} \mathbf{x}_{i} \times \mathbf{f}_{i}$$
External forces
$$\mathbf{F} \leftarrow \sum_{i} \mathbf{f}_{i}$$
$$\mathbf{x}_{cm} \leftarrow \mathbf{x}_{cm} + h\mathbf{v}_{cm}$$
$$\mathbf{v}_{cm} \leftarrow \mathbf{v}_{cm} + h\mathbf{F}/M$$
$$\mathbf{r} \leftarrow \mathbf{r} + h\mathbf{w}$$
$$\mathbf{w} \leftarrow \mathbf{w} + h\mathbf{t}/i$$
Euler step
$$\mathbf{x}_{i}^{world} \leftarrow \mathbf{x}_{cm} + \operatorname{Rot}_{r}\mathbf{x}_{i}$$
World position
$$\mathbf{v}_{i}^{world} \leftarrow \mathbf{v}_{cm} + \mathbf{w} \times \mathbf{x}_{i}$$

Collisions

- What happens during a collision?
 - Body is deformed
 - Elasticity: Deformation energy is released, body bounces back
 - Plasticity: Deformation energy is dissipated, body stays deformed
 - Different materials have different elasticity and plasticity
- Usually happens in a fraction of a second...
 - Hard to simulate explicitly

Collision Detection

- Simple case
 - Simulate boxes
 - Check corner points (or points on surface)
 - For target body, undo translation & rotation
 - Test points for intervals
- In practice:
 polgygon intersections,
 acceleration structures

Classifying Contacts

• Velocity of x_i on rigid body: $\mathbf{v}_i = \mathbf{v}_{cm} + \mathbf{w} \times \mathbf{x}_i$

 $\mathbf{v}_{rel} > 0$

 $\mathbf{v}_{rel} = 0$

- Retrieve collision normal
- Compute relative velocity:

$$\mathbf{v}_{rel} = \mathbf{n} \cdot (\mathbf{v}_A - \mathbf{v}_B)$$

- 3 Cases:
 - Colliding contact $\mathbf{v}_{rel} < 0$
 - Separating (easy!)
 - Resting contact

Collision Response

- Compute instantaneous effect of material deformation
- Separate handling of
 - linear motion
 - angular motion
- Make sure the object stop flying into each other...

Impulses

- We could try to model instantaneous deformation with forces, e.g.:
 - Measure penetration distance d
 - Apply force proportional to d
 - Hope that it keeps objects from moving into each other...
- Not a good idea:
 - No guarantees
 - Can cause large forces

Impulses

Soft Collision

• Force

• Velocity

Harder Collision

• Force

• Velocity

Very Hard Collision

Force

• Velocity

Rigid Body Collision

Impulsive force
 Velocity

t=0, infinite force

Impulses

- Fully rigid body would exert infinite elastic force over zero time interval
- Immediate velocity change, units like momentum (not force!)
- To avoid singularity, apply impulses that change velocity directly
- Use: $\mathbf{J} = m\Delta \mathbf{v}$ (no time step!)
- Instead of: $\Delta \mathbf{v} = h\mathbf{F}/m$

So much for 2D...

Rigid Bodies - Moving to 3D

- Positions are easy: 1 new axis
 - Existing integration methods fully hold
- Orientations are quite different
 - Rotation matrices
 - Quaternions (most game engines use this)
 - Exp. matrices

Angular Velocity in 3D

- So far, angular velocity was only the z component of the angular velocity vector
- \bullet In 3D, same principle for general vector ${\pmb w}$
 - Along axis of rotation
 - Speed of rotation is given by norm of ${\pmb w}$
 - But now all three components are used...

Inertia Tensor in 3D

- Continuos case: $\mathbf{I} = \int_{V} \rho(\mathbf{x}) (||\mathbf{x}||^2 \mathbf{x} \mathbf{x}^T) dV$ (Fun exercise: calculate for a few basic shapes)
- Discrete: mass-weighted co-variance matrix of body coordinate positions:

$$\mathbf{C} = \sum_{n} m_n \mathbf{x}_n \mathbf{x}_n^T$$
 $\mathbf{I} = \mathbf{Id} \operatorname{trace}(\mathbf{C}) - \mathbf{C}$

has to be invertible! No zero eigenvalues...

Example - Axes of Rotation

- Inertia tensor for box has 3 eigenvalues
- Largest & smallest one are stable
- Intermediate one leads to unstable rotation
- Same: ellipse with axes A > B > C

Updating the Inertia Tensor

- In 3D, the inertia tensor depends on the current orientation of the body!
- Luckily, we can compute this from the initial one

$$\mathbf{I}_{current} = \operatorname{Rot}_{\mathbf{r}} \mathbf{I}_0 \operatorname{Rot}_{\mathbf{r}}^{-1} = \operatorname{Rot}_{\mathbf{r}} \mathbf{I}_0 \operatorname{Rot}_{\mathbf{r}}^T$$

- Why? Used as $\mathbf{L} = \mathbf{Iw}$
 - Transform angular velocity into initial orientation, multiply with inertia tensor, transform back
 - Same holds for inverse (used in practice)

Angular Motion in 3D

- Small but important detail: it's not the angular velocity that is constant without forces, but the angular momentum
- Angular velocity can change without external forces and without temporal change of angular momentum
- Happens when:
 - Body has rotational velocity axis that is not a symmetry axis for body (i.e. angular momentum and angular velocity point in different directions)

Newton's 2nd Law for Rotations

 Given forces we can now compute the change of angular velocity over time:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L} = \mathbf{q} \qquad \mathbf{w} = \mathbf{I}^{-1} \mathbf{L}$$

$$\mathbf{L}(t+h) = \mathbf{L}(t) + h\mathbf{q}$$
$$\mathbf{I}^{-1} = \operatorname{Rot}_{\mathbf{r}} \mathbf{I}_{0}^{-1} \operatorname{Rot}_{\mathbf{r}}^{T}$$
$$\mathbf{w}(t+h) = \mathbf{I}^{-1} \mathbf{L}(t+h)$$

Note: integrates angular momentum over time, not angular velocity!

Points vs. Rigid Bodies (3D)

- For particles:
 - Position **x**
 - Velocity \boldsymbol{v}
- Dynamics:

$$\mathbf{v}(t) = \frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t}$$
$$\mathbf{a}(t) = \frac{\mathrm{d}\mathbf{v}(t)}{\mathrm{d}t}$$

- For a rigid body:
 - Position **x**
 - Orientation *r*
 - Linear velocity *v*
 - Angular velocity w
- Angular dynamics:

 $\mathbf{q}(t) = \sum_{i} \mathbf{x}_{i} \times \mathbf{f}_{i}$ $\mathbf{L}(t+h) = \mathbf{L}(t) + h\mathbf{q}$ $\mathbf{w}(t+h) = \mathbf{I}^{-1} \mathbf{L}(t+h)$

Simulation Algorithm 3D

Pre-compute: $M \leftarrow \sum_{i} m_{i}$ $\mathbf{x}'_{cm} \leftarrow \sum_{i} \mathbf{x}'_{i} m_{i} / M$ $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} - \mathbf{x}'_{cm}$ $\mathbf{I}^{-1} \leftarrow \sum_{i} m_{i} \dots$

Initialize: $\mathbf{x}_{cm}, \mathbf{v}_{cm}, \mathbf{r}, \mathbf{L}$ $\mathbf{I}^{-1} \leftarrow \operatorname{Rot}_{\mathbf{r}} \mathbf{I}_{0}^{-1} \operatorname{Rot}_{\mathbf{r}}^{T}$ $\mathbf{w} \leftarrow \mathbf{I}^{-1} \mathbf{L}$

$$\begin{split} \mathbf{F} &\leftarrow \sum_{i} \mathbf{f}_{i} \\ \mathbf{q} \leftarrow \sum_{i} \mathbf{x}_{i} \times \mathbf{f}_{i} \\ \mathbf{x}_{cm} \leftarrow \mathbf{x}_{cm} + h \mathbf{v}_{cm} \\ \mathbf{v}_{cm} \leftarrow \mathbf{v}_{cm} + h \mathbf{F} / M \\ \text{``} \mathbf{r} \leftarrow \mathbf{r} + h \mathbf{w} \text{``} \\ \mathbf{L} \leftarrow \mathbf{L} + h \mathbf{q} \\ \mathbf{I}^{-1} \leftarrow \operatorname{Rot}_{\mathbf{r}} \mathbf{I}_{0}^{-1} \operatorname{Rot}_{\mathbf{r}}^{T} \\ \mathbf{w} \leftarrow \mathbf{I}^{-1} \mathbf{L} \\ \mathbf{x}_{i}^{world} \leftarrow \mathbf{x}_{cm} + \operatorname{Rot}_{r} \mathbf{x}_{i} \\ \mathbf{v}_{i}^{world} \leftarrow \mathbf{v}_{cm} + \mathbf{w} \times \mathbf{x}_{i} \end{split}$$

External forces

Euler step

Depends on representation!

World position

Integrating the Orientation

- Example: Quaternion
 - General question what is time derivative of orientation given as quaternion?

- It turns out:
$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{1}{2} \begin{pmatrix} 0 \\ \mathbf{w} \end{pmatrix} \mathbf{r}; \ \mathbf{r} = (s, xi, yj, zk)$$

- Thus, integrate with:

$$\mathbf{r}' = \mathbf{r} + h/2 \begin{pmatrix} 0 \\ \mathbf{w} \end{pmatrix} \mathbf{r}$$

How well does this work?

Bullet Physics Engine / Blender. Video by Phymec

Rigidity

Bullet Physics Engine / Blender. Video by Phymec

How well does this work?

- Collision handling is problematic!
 - Stacking / Resting contact is hard

Tonge et al. 2012 Mass splitting for jitterfree RB simulations

How well does this work?

Resting contact

References

- David Baraff's SIGGRAPH course
 <u>http://www.cs.cmu.edu/~baraff/sigcourse</u>
- David Eberly: Game Physics (book) <u>www.geometrictools.com</u>
- Chris Hecker: Rigid Body Dynamics
 <u>chrishecker.com/Rigid_Body_Dynamics</u>