
Lecture #25:
Rigid Body Simulations

CS-184: Computer Graphics

Tobias Pfaff

537 Soda  

(Visual Computing Lab)

tpfaff@berkeley.edu

mailto:tpfaff@berkeley.edu

Reminder
• Final project presentations next week!

“Game Physics”

Types of Materials
• Particles
– Weakly interacting particles for fluids
– Non-interacting particles for visuals

• Mass-spring Systems
– Can model elastic ropes, sheets and bodies
– Simple model, fast
– Stiffness / discretization difficult to fine tune
– Stability problems for stiff materials

• Finite Elements
– Volume discretization of physical elasticity model
– More stable and controllable, but complex

Rigidity
• All materials are elastic to some extent in reality
• Example: try to model metal bar with high stiffness
– Will enforce inter object distances
– Propagate deformation, real behavior in the limit

• Problem: high stiffness means large forces, time
step will be tiny to keep things stable

Observation
• High stiffness means: vertices should not move

w.r.t. each other
– Effectively removes degrees of freedom from the system

• Obvious: don’t even simulate them in the first place
• New representation: center of mass and orientation
• Need equations of motion for both center of mass

and orientation

Complex Dynamics

Bullet Physics Engine / Blender. Video by Phymec

Overview
• Rigid bodies in 2D
– Orientation
– Integrating rotational motion
– Angular momentum
– Impulses

• Rigid bodies in 3D

Points vs. Rigid Bodies
• For particles:
– Position x
– Velocity v

• Dynamics:

• For a rigid body:
– Position x
– ?
– Velocity v
– ?

a(t) =
dv(t)

dt

v(t) =
dx(t)

dt

• Reference point on body:
center of mass

• Continuous:

• Discrete:

xcm =

R
x⇢(x)dVR
⇢(x)dV

xcm =

P
i mixiP
i mi

Representation

x(t)

v(t)

• Center of mass behaves like
a mass point with total mass
of the body M =

X

i

mi

xcm =

P
i mixi

M

vcm =

P
i mivi

M

acm =

P
i miai
M

Representation

x(t)

v(t)

• Orientation: rotation around
center of mass

• Point coordinates relative to
center of mass (body space)

• Absolute position (world space)

x

world

= x

cm

+Rotr(t)(x0)

Representation

x(t)

v(t)
r(t)

x0

Representation
Body space

x

world

World space

(For convenience, keep
center of mass at zero.)

xcm = 0

x

world

= x

cm

+Rotr(t)(x0)

• Previously: linear velocity
• Now also: angular velocity
• 3 component vector encoding

rate of angular change, and
axis of rotation

• Total velocity of a point:
vi = vcm +wcm ⇥ p0

Representation

x(t)

v(t)
r(t)

w(t)

wcm ⇥ p0

vcm

Orientation & Angular Velocity in 2D
• Only rotation around z, so w is a scalar
• E.g. given in radians
• Velocity of a point is given by:  

• Apply orientation to point with matrix:

Rot↵ =

✓
cos↵ �sin↵
sin↵ cos↵

◆

v
i

=

✓
�w x

i,y

w x

i,x

◆

Points vs. Rigid Bodies
• For particles:
– Position x
– Velocity v

• Dynamics:

• For a rigid body:
– Position x
– Orientation r
– Linear velocity v
– Angular velocity w

– Dynamics:

–?
a(t) =

dv(t)

dt

v(t) =
dx(t)

dt

Special Case for 2D
• Same as for point masses, e.g., Euler step:

• Works only because we have 1 axis of rotation
• Later on: conserve angular momentum (not

angular velocity)
• How to compute accelerations?

xcm = xcm + hvcm

rcm = rcm + hwcm

Inertia Tensor in 2D
• Equivalent to mass: “resistance to rotation”  

Is pre-computed for reference state
• In 2D, using body coordinates:

• Example

i =
X

n

mnxn · xn

Inertia Tensor in 2D
• What does i look like for these shapes? (Assume equal

total mass, and same material density.)
• Or - which shape spins more easily when poked?

Example
• Figure skating
– Starts in normal pose
– Rotation in plane
– Moment of inertia is

reduced by pulling in arms

Rotational Dynamics
• Mass points are restricted to move

perpendicular to their body space position
• Use cross product for projection
• Newton’s 2nd law:
• Newton’s 2nd law, restricted:

d

dt
(mivi) = fi

xi ⇥
d

dt
(mivi) = xi ⇥ fi

Both sides are vectors parallel
to actual axis of rotation

d

dt
L = q

Rotational Dynamics
• From before

• Move time derivative

• For whole body

• Rename

xi ⇥
d

dt
(mivi) = xi ⇥ fi

d

dt
(xi ⇥mivi) = xi ⇥ fi

d

dt

X

i

(xi ⇥mivi) =
X

i

xi ⇥ fi

Both sides are still vectors
parallel to axis of rotation

angular momentum
eq. momentum

torque
eq. force

Newton’s 2nd Law for Rotations
• Angular momentum:
• Torque

• Angular version of Newton’s 2nd law:
• Compute the change of angular velocity over

time, for 2D:

L =
X

i

xi ⇥mivi = Iw

q =
X

i

xi ⇥ fi

d

dt
L = q

w(t+ h) = I�1 L(t+ h)

w(t+ h) = w(t) + hq/i

Can has Angular Momentum Conservation?

• No external forces = no torque  
- angular momentum is constant

d

dt
L = q

• Cats still turn around in mid-air just fine

Can has Angular Momentum Conservation?

Points vs. Rigid Bodies
• For particles:
– Position x
– Velocity v

• Dynamics:

• For a rigid body:
– Position x
– Orientation r
– Linear velocity v
– Angular velocity w

– Angular dynamics:

a(t) =
dv(t)

dt

v(t) =
dx(t)

dt
q(t) =

X

i

xi ⇥ fi

w(t+ h) = w(h) + hq/i

t
X

i

xi ⇥ fi

F
X

i

fi

External forces

Simulation Algorithm in 2D

M
X

i

mi

x

0
cm

X

i

x

0
imi/M

xi x

0
i � x

0
cm

i
X

i

mixi · xi

Pre-compute:

xcm,vcm

r,L

w L/i

Initialize:

xcm xcm + hvcm

vcm vcm + hF/M

r r+ hw

w w + ht/i

Euler step

x

world

i

 x

cm

+Rot

r

x

i

v

world

i

 v

cm

+w ⇥ x

i

World position

Collisions
• What happens during a collision?
– Body is deformed
– Elasticity: Deformation energy is released,  

body bounces back
– Plasticity: Deformation energy is dissipated,  

body stays deformed
– Different materials have different elasticity and plasticity

• Usually happens in a fraction of a second…
–Hard to simulate explicitly

Collision Detection
• Simple case
– Simulate boxes
– Check corner points (or points on surface)
– For target body, undo translation & rotation
– Test points for intervals

• In practice:  
polgygon intersections,
acceleration structures

Classifying Contacts
• Velocity of xi on rigid body:
• Retrieve collision normal
• Compute relative velocity:

• 3 Cases:
– Colliding contact
– Separating (easy!)
– Resting contact

vi = vcm +w ⇥ xi

vrel = n · (vA � vB)

n

colliding

sliding

separatingvrel < 0

vrel > 0

vrel = 0

Collision Response
• Compute instantaneous effect of material deformation
• Separate handling of
– linear motion
– angular motion

• Make sure the object stop flying into each other...

Impulses
• We could try to model instantaneous deformation

with forces, e.g.:
– Measure penetration distance d
– Apply force proportional to d
– Hope that it keeps objects from moving into each other...

• Not a good idea:
– No guarantees
– Can cause large forces

Impulses

collision interval t

no force no force

Soft Collision
• Force • Velocity

t

Harder Collision
• Force • Velocity

t

Very Hard Collision
• Force • Velocity

t

Rigid Body Collision
• Impulsive force • Velocity

t=0 , infinite force

Impulses
• Fully rigid body would exert infinite elastic force

over zero time interval
• Immediate velocity change, units like momentum

(not force!)
• To avoid singularity, apply impulses that change

velocity directly
• Use: (no time step!)
• Instead of:

J = m�v

�v = hF/m

So much for 2D...

Rigid Bodies - Moving to 3D
• Positions are easy: 1 new axis
– Existing integration methods fully hold

• Orientations are quite different
– Rotation matrices
– Quaternions (most game engines use this)
– Exp. matrices

Angular Velocity in 3D
• So far, angular velocity was only the z

component of the angular velocity vector
• In 3D, same principle for general vector w
– Along axis of rotation
– Speed of rotation is given by norm of w
– But now all three components are used...

• Discrete: mass-weighted co-variance matrix of  
body coordinate positions:

Inertia Tensor in 3D

C =
X

n

mnxnx
T
n

trace(A) = a1,1 + a2,2 + a3,3

I = Id trace(C)�C

C =
X

n

mnxnx
T
n

trace(A) = a1,1 + a2,2 + a3,3

I = Id trace(C)�C

• has to be invertible! No zero eigenvalues...

• Continuos case: 
(Fun exercise: calculate for a few basic shapes)

I =

Z

V
⇢(x)

�
||x||2 � xx

T
�
dV

Example - Axes of Rotation
• Inertia tensor for box has 3 eigenvalues
• Largest & smallest one are stable
• Intermediate one leads to unstable rotation
• Same: ellipse with axes A > B > C

Updating the Inertia Tensor
• In 3D, the inertia tensor depends on the current

orientation of the body!
• Luckily, we can compute this from the initial one

• Why? Used as
– > Transform angular velocity into initial orientation,

multiply with inertia tensor, transform back
– Same holds for inverse (used in practice)

Icurrent = Rotr I0 Rot

�1
r = Rotr I0 Rot

T
r

L = Iw

Angular Motion in 3D
• Small but important detail: it’s not the angular

velocity that is constant without forces, but the
angular momentum
• Angular velocity can change without external

forces and without temporal change of angular
momentum
• Happens when:
– Body has rotational velocity axis that is not a symmetry

axis for body (i.e. angular momentum and angular
velocity point in different directions)

q(t) =
X

i

xi ⇥ fi

L(t+ h) = L(t) + hq

I

�1
= Rotr I

�1
0 Rot

T
r

w(t+ h) = I

�1
L(t+ h)

Newton’s 2nd Law for Rotations
• Given forces we can now compute the change

of angular velocity over time:

Note: integrates
angular momentum

over time, not
angular velocity!

d

dt
L = q w = I�1 L

Points vs. Rigid Bodies (3D)
• For particles:
– Position x
– Velocity v

• Dynamics:

• For a rigid body:
– Position x
– Orientation r
– Linear velocity v
– Angular velocity w

– Angular dynamics:

a(t) =
dv(t)

dt

v(t) =
dx(t)

dt
q(t) =

X

i

xi ⇥ fi

L(t+ h) = L(t) + hq

w(t+ h) = I

�1
L(t+ h)

External forcesF
X

i

fi

q
X

i

xi ⇥ fi

Simulation Algorithm 3D

M
X

i

mi

x

0
cm

X

i

x

0
imi/M

xi x

0
i � x

0
cm

I

�1
X

i

mi ...

Pre-compute:

xcm,vcm, r,L

I

�1 Rotr I

�1
0 Rot

T
r

w I

�1
L

Initialize:

x

world

i

 x

cm

+Rot

r

x

i

v

world

i

 v

cm

+w ⇥ x

i

World position

xcm xcm + hvcm

vcm vcm + hF/M

r r+ hw

L L+ hq

I

�1 Rotr I

�1
0 Rot

T
r

w I

�1
L

Euler step

“ “ Depends on
representation!

Integrating the Orientation
• Example: Quaternion
– General question - what is time derivative of

orientation given as quaternion?

– It turns out:

– Thus, integrate with:

r0 = r+ h/2

✓
0
w

◆
r

dr

dt
=

1

2

✓
0
w

◆
r; r = (s, xi, yj, zk)

How well does this work?

Bullet Physics Engine / Blender. Video by Phymec

Rigidity

Bullet Physics Engine / Blender. Video by Phymec

How well does this work?
• Collision handling is problematic! 

- Stacking / Resting contact is hard

Tonge et al. 2012
Mass splitting for jitter-
free RB simulations

How well does this work?
• Resting contact

v > 0 v > 0v < 0

Impulse

References
• David Baraff’s SIGGRAPH course  

http://www.cs.cmu.edu/~baraff/sigcourse
• David Eberly: Game Physics (book)  

www.geometrictools.com
• Chris Hecker: Rigid Body Dynamics 

chrishecker.com/Rigid_Body_Dynamics

http://www.cs.cmu.edu/~baraff/sigcourse
http://www.geometrictools.com
http://chrishecker.com/Rigid_Body_Dynamics

