CS-184: Computer Graphics

Lecture \#25:

Rigid Body Simulations

Tobias Pfaff
537 Soda
(Visual Computing Lab)
tpfaff@berkeley.edu

Reminder

- Final project presentations next week!

"Game Physics"

Types of Materials

- Particles
- Weakly interacting particles for fluids
- Non-interacting particles for visuals
- Mass-spring Systems
- Can model elastic ropes, sheets and bodies
- Simple model, fast
- Stiffness / discretization difficult to fine tune
- Stability problems for stiff materials
- Finite Elements
- Volume discretization of physical elasticity model
- More stable and controllable, but complex

Rigidity

- All materials are elastic to some extent in reality
- Example: try to model metal bar with high stiffness - Will enforce inter object distances
- Propagate deformation, real behavior in the limit
- Problem: high stiffness means large forces, time step will be tiny to keep things stable

Observation

- High stiffness means: vertices should not move w.r.t. each other
- Effectively removes degrees of freedom from the system
- Obvious: don't even simulate them in the first place
- New representation: center of mass and orientation
- Need equations of motion for both center of mass and orientation

Complex Dynamics

Bullet Physics Engine / Blender. Video by Phymec

Overview

- Rigid bodies in 2D
- Orientation
- Integrating rotational motion
- Angular momentum
- Impulses
- Rigid bodies in 3D

Points vs. Rigid Bodies

- For particles:
- Position \boldsymbol{x}
- Velocity \boldsymbol{v}
- Dynamics:

$$
\begin{aligned}
& \mathbf{v}(t)=\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t} \\
& \mathbf{a}(t)=\frac{\mathrm{d} \mathbf{v}(t)}{\mathrm{d} t}
\end{aligned}
$$

- For a rigid body:
- Position \boldsymbol{x}
- ?
- Velocity \boldsymbol{v}
- ?

Representation

- Reference point on body: center of mass
- Continuous:

$$
\mathbf{x}_{c m}=\frac{\int \mathbf{x} \rho(x) \mathrm{d} V}{\int \rho(x) \mathrm{d} V}
$$

- Discrete:

$$
\mathbf{x}_{c m}=\frac{\sum_{i} m_{i} \mathbf{x}_{\mathbf{i}}}{\sum_{i} m_{i}}
$$

Representation

- Center of mass behaves like a mass point with total mass of the body $M=\sum_{i} m_{i}$

$$
\begin{aligned}
\mathbf{x}_{c m} & =\frac{\sum_{i} m_{i} \mathbf{x}_{\mathbf{i}}}{M} \\
\mathbf{v}_{c m} & =\frac{\sum_{i} m_{i} \mathbf{v}_{\mathbf{i}}}{M} \\
\mathbf{a}_{c m}= & \frac{\sum_{i} m_{i} \mathbf{a}_{\mathbf{i}}}{M}
\end{aligned}
$$

Representation

- Orientation: rotation around center of mass
- Point coordinates relative to center of mass (body space)
- Absolute position (world space)

$$
\mathbf{x}_{w o r l d}=\mathbf{x}_{c m}+\operatorname{Rot}_{\mathbf{r}(t)}\left(\mathbf{x}_{0}\right)
$$

Representation

Body space
World space

Representation

- Previously: linear velocity
- Now also: angular velocity
- 3 component vector encoding rate of angular change, and axis of rotation
- Total velocity of a point:

$$
\mathbf{v}_{i}=\mathbf{v}_{c m}+\mathbf{w}_{c m} \times \mathbf{p}_{0}
$$

Orientation \& Angular Velocity in 2D

- Only rotation around z, so w is a scalar
- E.g. given in radians
- Velocity of a point is given by:

$$
\mathbf{v}_{i}=\binom{-w x_{i, y}}{w x_{i, x}}
$$

- Apply orientation to point with matrix:

$$
\operatorname{Rot}_{\alpha}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

Points vs. Rigid Bodies

- For particles:
- Position \boldsymbol{x}
- Velocity \boldsymbol{v}
- Dynamics:

$$
\begin{aligned}
& \mathbf{v}(t)=\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t} \\
& \mathbf{a}(t)=\frac{\mathrm{d} \mathbf{v}(t)}{\mathrm{d} t}
\end{aligned}
$$

- For a rigid body:
- Position \boldsymbol{x}
- Orientation r
- Linear velocity \boldsymbol{v}
- Angular velocity \boldsymbol{w}
- Dynamics:
-?

Special Case for 2D

- Same as for point masses, e.g., Euler step:

$$
\begin{aligned}
\mathbf{x}_{c m} & =\mathbf{x}_{c m}+h \mathbf{v}_{c m} \\
\mathbf{r}_{c m} & =\mathbf{r}_{c m}+h \mathbf{w}_{c m}
\end{aligned}
$$

- Works only because we have 1 axis of rotation
- Later on: conserve angular momentum (not angular velocity)
- How to compute accelerations?

Inertia Tensor in 2D

- Equivalent to mass: "resistance to rotation"

Is pre-computed for reference state

- In 2D, using body coordinates:

$$
i=\sum_{n} m_{n} \mathbf{x}_{n} \cdot \mathbf{x}_{n}
$$

- Example

Inertia Tensor in 2D

- What does i look like for these shapes? (Assume equal total mass, and same material density.)
- Or - which shape spins more easily when poked?

Example

- Figure skating
- Starts in normal pose
- Rotation in plane
- Moment of inertia is reduced by pulling in arms

Rotational Dynamics

- Mass points are restricted to move perpendicular to their body space position
- Use cross product for projection
- Newton's 2nd law: $\frac{\mathrm{d}}{\mathrm{d} t}\left(m_{i} \mathbf{v}_{i}\right)=\mathbf{f}_{i}$
- Newton's 2nd law, restricted:

$$
\mathbf{x}_{i} \times \frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{i} \mathbf{v}_{i}\right)=\mathbf{x}_{i} \times \mathbf{f}_{i}
$$

Both sides are vectors parallel to actual axis of rotation

Rotational Dynamics

- From before

$$
\mathbf{x}_{i} \times \frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{i} \mathbf{v}_{i}\right)=\mathbf{x}_{i} \times \mathbf{f}_{i}
$$

- Move time derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathbf{x}_{i} \times m_{i} \mathbf{v}_{i}\right)=\mathbf{x}_{i} \times \mathbf{f}_{i}
$$

- For whole body

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i}\left(\mathbf{x}_{i} \times m_{i} \mathbf{v}_{i}\right)=\sum_{i} \mathbf{x}_{i} \times \mathbf{f}_{i}
$$

- Rename
angular momentum eq. momentum

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{L}=\mathbf{q} \tag{torque}
\end{equation*}
$$

Both sides are still vectors parallel to axis of rotation

Newton's 2nd Law for Rotations

- Angular momentum: $\mathbf{L}=\sum_{i} \mathbf{x}_{i} \times m_{i} \mathbf{v}_{i}=\mathbf{I} \mathbf{w}$
- Torque

$$
\mathbf{q}=\sum_{i}^{i} \mathbf{x}_{i} \times \mathbf{f}_{i}
$$

- Angular version of Newton's 2 nd law: $\frac{\mathrm{d}}{\mathrm{d} t} \mathbf{L}=\mathbf{q}$
- Compute the change of angular velocity over time, for 2D:

$$
\mathbf{w}(t+h)=\mathbf{I}^{-1} \mathbf{L}(t+h)
$$

$$
\mathbf{w}(t+h)=\mathbf{w}(t)+h \mathbf{q} / i
$$

Can has Angular Momentum Conservation?

- No external forces = no torque
- angular momentum is constant

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{L}=\mathbf{q}
$$

- Cats still turn around in mid-air just fine

Can has Angular Momentum Conservation?

Points vs. Rigid Bodies

- For particles:
- Position \boldsymbol{x}
- Velocity \boldsymbol{v}
- Dynamics:

$$
\begin{aligned}
& \mathbf{v}(t)=\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t} \\
& \mathbf{a}(t)=\frac{\mathrm{d} \mathbf{v}(t)}{\mathrm{d} t}
\end{aligned}
$$

- For a rigid body:
- Position \boldsymbol{x}
- Orientation r
- Linear velocity \boldsymbol{v}
- Angular velocity w
- Angular dynamics:

$$
\begin{aligned}
\mathbf{q}(t) & =\sum_{i} \mathbf{x}_{i} \times \mathbf{f}_{i} \\
\mathbf{w}(t+h) & =\mathbf{w}(h)+h \mathbf{q} / i
\end{aligned}
$$

Simulation Algerithm in 2D

$$
\begin{aligned}
& \text { Pre-compute: } \\
& M \leftarrow \sum_{i} m_{i} \\
& \mathbf{x}_{c m}^{\prime}
\end{aligned} \leftarrow \sum_{i} \mathbf{x}_{i}^{\prime} m_{i} / M,
$$

Initialize:

$$
\begin{aligned}
& \mathbf{x}_{c m}, \mathbf{v}_{c m} \\
& \mathbf{r}, \mathbf{L} \\
& \mathbf{w} \leftarrow \mathbf{L} / i
\end{aligned}
$$

Collisions

- What happens during a collision?
-Body is deformed
- Elasticity: Deformation energy is released, body bounces back
- Plasticity: Deformation energy is dissipated, body stays deformed
- Different materials have different elasticity and plasticity
- Usually happens in a fraction of a second...
- Hard to simulate explicitly

Collision Detection

- Simple case
- Simulate boxes
- Check corner points (or points on surface)
- For target body, undo translation \& rotation
- Test points for intervals
- In practice:
polgygon intersections, acceleration structures

Classifying Contacts

- Velocity of x_{i} on rigid body: $\mathbf{v}_{i}=\mathbf{v}_{c m}+\mathbf{w} \times \mathbf{x}_{i}$
- Retrieve collision normal
- Compute relative velocity:

$$
\mathbf{v}_{r e l}=\mathbf{n} \cdot\left(\mathbf{v}_{A}-\mathbf{v}_{B}\right)
$$

- 3 Cases:
- Colliding contact $\quad \mathbf{v}_{\text {rel }}<0$
- Separating (easy!) $\quad \mathbf{v}_{\text {rel }}>0$
- Resting contact $\quad \mathbf{v}_{\text {rel }}=0$

Collision Response

- Compute instantaneous effect of material deformation
- Separate handling of
- linear motion
- angular motion
- Make sure the object stop flying into each other...

Impulses

- We could try to model instantaneous deformation with forces, e.g.:
- Measure penetration distance d
- Apply force proportional to d
- Hope that it keeps objects from moving into each other...
- Not a good idea:
- No guarantees
- Can cause large forces

Impulses

collision interval t

no force

no force

Soft Collision

- Force
- Velocity

Harder Collision

- Force
- Velocity

Very Hard Collision

- Force

- Velocity

Rigid Body Collision

- Impulsive force
- Velocity
$t=0$, infinite force

Impulses

- Fully rigid body would exert infinite elastic force over zero time interval
- Immediate velocity change, units like momentum (not force!)
- To avoid singularity, apply impulses that change velocity directly
- Use: $\mathbf{J}=m \Delta \mathbf{v}$ (no time step!)
- Instead of: $\Delta \mathbf{v}=h \mathbf{F} / m$

So much for 2D...

Rigid Bodies - Moving to 3D

- Positions are easy: 1 new axis
- Existing integration methods fully hold
- Orientations are quite different
- Rotation matrices
- Quaternions (most game engines use this)
- Exp. matrices

Angular Velocity in 3D

- So far, angular velocity was only the z component of the angular velocity vector
- In 3D, same principle for general vector \boldsymbol{w}
- Along axis of rotation
- Speed of rotation is given by norm of \boldsymbol{w}
- But now all three components are used...

Inertia Tensor in 3D

- Continuos case: $\mathbf{I}=\int_{V} \rho(\mathbf{x})\left(\|\mathbf{x}\|^{2}-\mathbf{x} \mathbf{x}^{T}\right) \mathrm{d} V$ (Fun exercise: calculate for a few basic shapes)
- Discrete: mass-weighted co-variance matrix of body coordinate positions:

$$
\mathbf{C}=\sum_{n} m_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \quad \mathbf{I}=\mathbf{I} \mathbf{d} \operatorname{trace}(\mathbf{C})-\mathbf{C}
$$

- has to be invertible! No zero eigenvalues...

Example - Axes of Rotation

- Inertia tensor for box has 3 eigenvalues
- Largest \& smallest one are stable
- Intermediate one leads to unstable rotation
- Same: ellipse with axes $\mathrm{A}>\mathrm{B}>\mathrm{C}$

Updating the Inertia Tensor

- In 3D, the inertia tensor depends on the current orientation of the body!
- Luckily, we can compute this from the initial one

$$
\mathbf{I}_{\text {current }}=\operatorname{Rot}_{\mathbf{r}} \mathbf{I}_{0} \operatorname{Rot}_{\mathbf{r}}^{-1}=\operatorname{Rot}_{\mathbf{r}} \mathbf{I}_{0} \operatorname{Rot}_{\mathbf{r}}^{T}
$$

- Why? Used as $\mathbf{L}=\mathbf{I w}$
- > Transform angular velocity into initial orientation, multiply with inertia tensor, transform back
- Same holds for inverse (used in practice)

Angular Motion in 3D

- Small but important detail: it's not the angular velocity that is constant without forces, but the angular momentum
- Angular velocity can change without external forces and without temporal change of angular momentum
- Happens when:
- Body has rotational velocity axis that is not a symmetry axis for body (i.e. angular momentum and angular velocity point in different directions)

Newton's 2nd Law for Rotations

- Given forces we can now compute the change of angular velocity over time:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{L}=\mathbf{q} \quad \mathbf{w}=\mathbf{I}^{-1} \mathbf{L} \\
& \mathbf{L}(t+h)=\mathbf{L}(t)+h \mathbf{q} \\
& \mathbf{I}^{-1}= \operatorname{Rot}_{\mathbf{r}} \mathbf{I}_{0}^{-1} \operatorname{Rot}_{\mathbf{r}}^{T} \\
& \mathbf{w}(t+h)=\mathbf{I}^{-1} \mathbf{L}(t+h)
\end{aligned}
$$

Note: integrates
angular momentum
over time, not
angular velocity!

Points vs. Rigid Bodies (3D)

- For particles:
- Position \boldsymbol{x}
- Velocity \boldsymbol{v}
- Dynamics:

$$
\begin{aligned}
& \mathbf{v}(t)=\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t} \\
& \mathbf{a}(t)=\frac{\mathrm{d} \mathbf{v}(t)}{\mathrm{d} t}
\end{aligned}
$$

- For a rigid body:
- Position \boldsymbol{x}
- Orientation r
- Linear velocity \boldsymbol{v}
- Angular velocity w
- Angular dynamics:

$$
\begin{aligned}
\mathbf{q}(t) & =\sum_{i} \mathbf{x}_{i} \times \mathbf{f}_{i} \\
\mathbf{L}(t+h) & =\mathbf{L}(t)+h \mathbf{q} \\
\mathbf{w}(t+h) & =\mathbf{I}^{-1} \mathbf{L}(t+h)
\end{aligned}
$$

Simulation Algorithm 3D

Pre-compute:

$$
\begin{aligned}
M & \leftarrow \sum_{i} m_{i} \\
\mathbf{x}_{c m}^{\prime} & \leftarrow \sum_{i} \mathbf{x}_{i}^{\prime} m_{i} / M \\
\mathbf{x}_{i} & \leftarrow \mathbf{x}_{i}^{\prime}-\mathbf{x}_{c m}^{\prime} \\
\mathbf{I}^{-1} & \leftarrow \sum_{i} m_{i} \ldots
\end{aligned}
$$

Initialize:

$$
\begin{aligned}
& \mathbf{x}_{c m}, \mathbf{v}_{c m}, \mathbf{r}, \mathbf{L} \\
& \mathbf{I}^{-1} \leftarrow \operatorname{Rot}_{\mathbf{r}} \mathbf{I}_{0}^{-1} \operatorname{Rot}_{\mathbf{r}}^{T} \\
& \mathbf{w} \leftarrow \mathbf{I}^{-1} \mathbf{L}
\end{aligned}
$$

\[

\]

$$
\mathbf{I}^{-1} \leftarrow \operatorname{Rot}_{\mathbf{r}} \mathbf{I}_{0}^{-1} \operatorname{Rot}_{\mathbf{r}}^{T}
$$

$$
\mathbf{w} \leftarrow \mathbf{I}^{-1} \mathbf{L}
$$

$$
\mathbf{x}_{i}^{\text {world }} \leftarrow \mathbf{x}_{c m}+\operatorname{Rot}_{r} \mathbf{x}_{i}
$$

$$
\mathbf{v}_{i}^{w o r l d} \leftarrow \mathbf{v}_{c m}+\mathbf{w} \times \mathbf{x}_{i}
$$

Integrating the Orientation

- Example: Quaternion
- General question - what is time derivative of orientation given as quaternion?
- It turns out: $\quad \frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}=\frac{1}{2}\binom{0}{\mathbf{w}} \mathbf{r} ; \mathbf{r}=(s, x i, y j, z k)$
- Thus, integrate with:

$$
\mathbf{r}^{\prime}=\mathbf{r}+h / 2\binom{0}{\mathbf{w}} \mathbf{r}
$$

How well does this work?

Bullet Physics Engine / Blender. Video by Phymec

Rigidity

Bullet Physics Engine / Blender. Video by Phymec

How well does this work?

- Collision handling is problematic!
- Stacking / Resting contact is hard

Tonge et al. 2012
Mass splitting for jitterfree RB simulations

How well does this work?

- Resting contact

Impulse

$v>0$

$\mathrm{v}<0$

$v>0$

References

- David Baraff's SIGGRAPH course http://www.cs.cmu.edu/~baraff/sigcourse
- David Eberly: Game Physics (book) www.geometrictools.com
- Chris Hecker: Rigid Body Dynamics chrishecker.com/Rigid Body Dynamics

