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Reminder
• Final project presentations next week!



“Game Physics”



Types of Materials
• Particles 
– Weakly interacting particles for fluids 
– Non-interacting particles for visuals 

• Mass-spring Systems 
– Can model elastic ropes, sheets and bodies 
– Simple model, fast 
– Stiffness / discretization difficult to fine tune 
– Stability problems for stiff materials 

• Finite Elements  
– Volume discretization of physical elasticity model 
– More stable and controllable, but complex



Rigidity
• All materials are elastic to some extent in reality 
• Example: try to model metal bar with high stiffness 
– Will enforce inter object distances 
– Propagate deformation, real behavior in the limit 

• Problem: high stiffness means large forces, time 
step will be tiny to keep things stable



Observation
• High stiffness means: vertices should not move 

w.r.t. each other 
– Effectively removes degrees of freedom from the system 

• Obvious: don’t even simulate them in the first place 
• New representation: center of mass and orientation 
• Need equations of motion for both center of mass 

and orientation



Complex Dynamics

Bullet Physics Engine / Blender. Video by Phymec



Overview
• Rigid bodies in 2D 
– Orientation 
– Integrating rotational motion 
– Angular momentum 
– Impulses 

• Rigid bodies in 3D



Points vs. Rigid Bodies
• For particles: 
– Position x 
– Velocity v 

• Dynamics:

• For a rigid body: 
– Position x 
– ? 
– Velocity v 
– ? 

a(t) =
dv(t)

dt

v(t) =
dx(t)

dt



• Reference point on body: 
center of mass 

• Continuous: 

• Discrete:

xcm =

R
x⇢(x)dVR
⇢(x)dV

xcm =

P
i mixiP
i mi

Representation

x(t)

v(t)



• Center of mass behaves like 
a mass point with total mass 
of the body M =

X

i

mi

xcm =

P
i mixi

M

vcm =

P
i mivi

M

acm =

P
i miai
M

Representation

x(t)

v(t)



• Orientation: rotation around 
center of mass 

• Point coordinates relative to 
center of mass (body space) 

• Absolute position (world space)

x

world

= x

cm

+Rotr(t)(x0)

Representation

x(t)

v(t)
r(t)



x0

Representation
Body space

x

world

World space

(For convenience, keep 
center of mass at zero.)

xcm = 0

x

world

= x

cm

+Rotr(t)(x0)



• Previously: linear velocity 
• Now also: angular velocity 
• 3 component vector encoding 

rate of angular change, and 
axis of rotation 

• Total velocity of a point:
vi = vcm +wcm ⇥ p0

Representation

x(t)

v(t)
r(t)

w(t)

wcm ⇥ p0

vcm



Orientation & Angular Velocity in 2D
• Only rotation around z, so w is a scalar 
• E.g. given in radians 
• Velocity of a point is given by:  

• Apply orientation to point with matrix:

Rot↵ =

✓
cos↵ �sin↵
sin↵ cos↵

◆

v
i

=

✓
�w x

i,y

w x

i,x

◆



Points vs. Rigid Bodies
• For particles: 
– Position x 
– Velocity v 

• Dynamics:

• For a rigid body: 
– Position x 
– Orientation r 
– Linear velocity v 
– Angular velocity w 

– Dynamics: 

–?
a(t) =

dv(t)

dt

v(t) =
dx(t)

dt



Special Case for 2D
• Same as for point masses, e.g., Euler step: 

• Works only because we have 1 axis of rotation 
• Later on: conserve angular momentum (not 

angular velocity) 
• How to compute accelerations?

xcm = xcm + hvcm

rcm = rcm + hwcm



Inertia Tensor in 2D
• Equivalent to mass: “resistance to rotation”  

Is pre-computed for reference state 
• In 2D, using body coordinates: 

• Example

i =
X

n

mnxn · xn



Inertia Tensor in 2D
• What does i look like for these shapes? (Assume equal 

total mass, and same material density.) 
• Or - which shape spins more easily when poked?



Example
• Figure skating 
– Starts in normal pose 
– Rotation in plane 
– Moment of inertia is 

reduced by pulling in arms



Rotational Dynamics
• Mass points are restricted to move 

perpendicular to their body space position 
• Use cross product for projection 
• Newton’s 2nd law: 
• Newton’s 2nd law, restricted:

d

dt
(mivi) = fi

xi ⇥
d

dt
(mivi) = xi ⇥ fi

Both sides are vectors parallel 
to actual axis of rotation



d

dt
L = q

Rotational Dynamics
• From before 

• Move time derivative 

• For whole body 

• Rename

xi ⇥
d

dt
(mivi) = xi ⇥ fi

d

dt
(xi ⇥mivi) = xi ⇥ fi

d

dt

X

i

(xi ⇥mivi) =
X

i

xi ⇥ fi

Both sides are still vectors 
parallel to axis of rotation

angular momentum 
eq. momentum

torque 
eq. force



Newton’s 2nd Law for Rotations
• Angular momentum: 
• Torque 

• Angular version of Newton’s 2nd law: 
• Compute the change of angular velocity over 

time, for 2D:

L =
X

i

xi ⇥mivi = Iw

q =
X

i

xi ⇥ fi

d

dt
L = q

w(t+ h) = I�1 L(t+ h)

w(t+ h) = w(t) + hq/i



Can has Angular Momentum Conservation?

• No external forces = no torque  
- angular momentum is constant

d

dt
L = q

• Cats still turn around in mid-air just fine



Can has Angular Momentum Conservation?



Points vs. Rigid Bodies
• For particles: 
– Position x 
– Velocity v 

• Dynamics:

• For a rigid body: 
– Position x 
– Orientation r 
– Linear velocity v 
– Angular velocity w 

– Angular dynamics:

a(t) =
dv(t)

dt

v(t) =
dx(t)

dt
q(t) =

X

i

xi ⇥ fi

w(t+ h) = w(h) + hq/i



t 
X

i

xi ⇥ fi

F 
X

i

fi

External forces

Simulation Algorithm in 2D

M  
X

i

mi

x

0
cm  

X

i

x

0
imi/M

xi  x

0
i � x

0
cm

i 
X

i

mixi · xi

Pre-compute:

xcm,vcm

r,L

w L/i

Initialize:

xcm  xcm + hvcm

vcm  vcm + hF/M

r r+ hw

w w + ht/i

Euler step

x

world

i

 x

cm

+Rot

r

x

i

v

world

i

 v

cm

+w ⇥ x

i

World position



Collisions
• What happens during a collision? 
– Body is deformed  
– Elasticity: Deformation energy is released,  

body bounces back 
– Plasticity: Deformation energy is dissipated,  

body stays deformed 
– Different materials have different elasticity and plasticity 

• Usually happens in a fraction of a second… 
–Hard to simulate explicitly



Collision Detection
• Simple case 
– Simulate boxes 
– Check corner points (or points on surface) 
– For target body, undo translation & rotation 
– Test points for intervals

• In practice:  
polgygon intersections,  
acceleration structures



Classifying Contacts
• Velocity of xi on rigid body: 
• Retrieve collision normal 
• Compute relative velocity: 

• 3 Cases: 
– Colliding contact 
– Separating (easy!) 
– Resting contact

vi = vcm +w ⇥ xi

vrel = n · (vA � vB)

n

colliding

sliding

separatingvrel < 0

vrel > 0

vrel = 0



Collision Response
• Compute instantaneous effect of material deformation  
• Separate handling of  
– linear motion 
– angular motion 

• Make sure the object stop flying into each other...



Impulses
• We could try to model instantaneous deformation 

with forces, e.g.: 
– Measure penetration distance d 
– Apply force proportional to d 
– Hope that it keeps objects from moving into each other... 

• Not a good idea: 
– No guarantees 
– Can cause large forces



Impulses

collision interval t

no force no force



Soft Collision
• Force • Velocity

t



Harder Collision
• Force • Velocity

t



Very Hard Collision
• Force • Velocity

t



Rigid Body Collision
• Impulsive force • Velocity

t=0 , infinite force



Impulses
• Fully rigid body would exert infinite elastic force 

over zero time interval 
• Immediate velocity change, units like momentum 

(not force!) 
• To avoid singularity, apply impulses that change 

velocity directly 
• Use:                                     (no time step!) 
• Instead of: 

J = m�v

�v = hF/m



So much for 2D...



Rigid Bodies - Moving to 3D
• Positions are easy: 1 new axis 
– Existing integration methods fully hold 

• Orientations are quite different 
– Rotation matrices 
– Quaternions (most game engines use this) 
– Exp. matrices



Angular Velocity in 3D
• So far, angular velocity was only the z 

component of the angular velocity vector 
• In 3D, same principle for general vector w 
– Along axis of rotation 
– Speed of rotation is given by norm of w 
– But now all three components are used...



• Discrete: mass-weighted co-variance matrix of  
body coordinate positions:

Inertia Tensor in 3D

C =
X

n

mnxnx
T
n

trace(A) = a1,1 + a2,2 + a3,3

I = Id trace(C)�C

C =
X

n

mnxnx
T
n

trace(A) = a1,1 + a2,2 + a3,3

I = Id trace(C)�C

• has to be invertible! No zero eigenvalues...

• Continuos case: 
(Fun exercise: calculate for a few basic shapes)

I =

Z

V
⇢(x)

�
||x||2 � xx

T
�
dV



Example - Axes of Rotation
• Inertia tensor for box has 3 eigenvalues 
• Largest & smallest one are stable 
• Intermediate one leads to unstable rotation 
• Same: ellipse with  axes A > B > C



Updating the Inertia Tensor
• In 3D, the inertia tensor depends on the current 

orientation of the body! 
• Luckily, we can compute this from the initial one 

• Why? Used as  
– > Transform angular velocity into initial orientation, 

multiply with inertia tensor, transform back 
– Same holds for inverse (used in practice)

Icurrent = Rotr I0 Rot

�1
r = Rotr I0 Rot

T
r

L = Iw



Angular Motion in 3D 
• Small but important detail: it’s not the angular 

velocity that is constant without forces, but the 
angular momentum 
• Angular velocity can change without external 

forces and without temporal change of angular 
momentum 
• Happens when:  
– Body has rotational velocity axis that is not a symmetry 

axis for body (i.e. angular momentum and angular 
velocity point in different directions)



q(t) =
X

i

xi ⇥ fi

L(t+ h) = L(t) + hq

I

�1
= Rotr I

�1
0 Rot

T
r

w(t+ h) = I

�1
L(t+ h)

Newton’s 2nd Law for Rotations
• Given forces we can now compute the change 

of angular velocity over time:

Note: integrates 
angular momentum 

over time, not 
angular velocity!

d

dt
L = q w = I�1 L



Points vs. Rigid Bodies (3D)
• For particles: 
– Position x 
– Velocity v 

• Dynamics:

• For a rigid body: 
– Position x 
– Orientation r 
– Linear velocity v 
– Angular velocity w 

– Angular dynamics:

a(t) =
dv(t)

dt

v(t) =
dx(t)

dt
q(t) =

X

i

xi ⇥ fi

L(t+ h) = L(t) + hq

w(t+ h) = I

�1
L(t+ h)



External forcesF 
X

i

fi

q 
X

i

xi ⇥ fi

Simulation Algorithm 3D

M  
X

i

mi

x

0
cm  

X

i

x

0
imi/M

xi  x

0
i � x

0
cm

I

�1  
X

i

mi ...

Pre-compute:

xcm,vcm, r,L

I

�1  Rotr I

�1
0 Rot

T
r

w I

�1
L

Initialize:

x

world

i

 x

cm

+Rot

r

x

i

v

world

i

 v

cm

+w ⇥ x

i

World position

xcm  xcm + hvcm

vcm  vcm + hF/M

r r+ hw

L L+ hq

I

�1  Rotr I

�1
0 Rot

T
r

w I

�1
L

Euler step

“                    “ Depends on 
representation!



Integrating the Orientation
• Example: Quaternion 
– General question - what is time derivative of 

orientation given as quaternion? 

– It turns out: 

– Thus, integrate with:

r0 = r+ h/2

✓
0
w

◆
r

dr

dt
=

1

2

✓
0
w

◆
r; r = (s, xi, yj, zk)



How well does this work?

Bullet Physics Engine / Blender. Video by Phymec



Rigidity

Bullet Physics Engine / Blender. Video by Phymec



How well does this work?
• Collision handling is problematic! 

- Stacking / Resting contact is hard

Tonge et al. 2012 
Mass splitting for jitter- 
free RB simulations



How well does this work?
• Resting contact

v > 0 v > 0v < 0

Impulse
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