
CS-184: Computer Graphics 
Lecture #21: Fluid Simulation II

Rahul Narain

University of California, Berkeley

!
Nov. 18–19, 2013



Grid-based fluid simulation

• Recap: Eulerian viewpoint 

• Grid is fixed, fluid moves through it 

• How does the velocity at a grid cell  
change over time?



Eulerian and Lagrangian time derivatives

• Consider a weather balloon moving with the wind, 
measuring air temperature T(x, t)
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Eulerian and Lagrangian time derivatives

• Consider a weather balloon moving with the wind.  
It measures air temperature as T(x(t), t)
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Temperature as seen 
by balloon

[Chain rule]

Velocity of balloon 
= velocity of air



Eulerian and Lagrangian time derivatives
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Lagrangian derivative:

change seen by a point 

moving with the fluid

Change due to movement 
of fluid (“advection”)

Eulerian derivative:

change at a fixed point



The fluid equations

• Newton’s second law 

• Forces: 

!

• Acceleration is Lagrangian:

a = f/⇢

f = f ext �rp+ µr2u
Reminder: 

Velocity is u now
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Acceleration of 
fluid “molecule”

Change at 
a grid cell

Flow advects 
itself!



The fluid equations
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• The Navier-Stokes equations
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C.-L. Navier G.G. Stokes

Millenium prize:

$1,000,000 to prove 

(or disprove) 
existence & smoothness 

of solutions



Operator splitting
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• Lots of different terms; hard to integrate in one go 

• Deal with one term at a time 

• (ignoring all the others)
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Operator splitting

un

un+1

@u

@t
+ u ·ru = 0Integrate  for time Δt

Adv
ec

tio
n

@u

@t
=

1

⇢
f extIntegrate  for time Δt Exte

rna
l 

for
ce

s

@u

@t
= �1

⇢
rpIntegrate  for time Δt

Pres
sur

e

Visc
os

ity
Integrate  for time Δt

@u

@t
=

µ

⇢
r2u



Advection

!

• Transport a quantity (in this case, u) via the velocity field u 

• Confusing! Let’s transport something else first 

!

• e.g. colour, temperature, concentration  
of ink in water / smoke in air / etc.
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Advection

An An+1un
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+ u ·rA = 0

Transport A by tracing backwards and looking up its value



Advection

• Input: initial grid An, velocity field un 

• Output: final grid An+1 

• For each grid cell xi 

• Backtrace position, e.g. 

• Set output 

x

back = xi � ui�t

An+1
i = interpolate An

at x

back

To advect velocities, just feed in un as the initial grid too.



External forces

• Gravity 

• Buoyancy 

!
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• User interaction
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Temperature 
of fluid
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External forces

Lentine, Zheng, and Fedkiw, 2010



Pressure

Becker and Teschner, 2007



Incompressibility

• We will prohibit compressibility from our simulation.

n

Net flow into/out of region
=
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[Divergence theorem]

We want net flow to be 0 for all possible regions, so… 
!

∇ · u = 0 everywhere

Fixed surface

u

Flow



Pressure
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• Let’s just do forward Euler…
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Pressure
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• Let’s just do forward Euler… 

• …and choose the p which makes unew divergence-free
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Ignore the ⍴/Δt 
(just a rescaling)



The Helmholtz-Hodge decomposition

• Equivalently: separate u into curl-free and divergence-
free components 
…then throw away the curl-free part

= +

Input Curl-free Divergence-free

u ∇p unew− =



Pressure

• We just have to solve                     

• How? 

!

• Q1: How to evaluate ∇· and ∇² on a grid 

• Q2: How to store p and u on the grid in the first place

r2p = r · u



Finite differences in 1D

 

• On a grid, we only have samples at grid spacing Δx
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Finite differences in 2D

 

• Apply forward and backward differences
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Staggered (marker-and-cell) grids

• Store pressure at cell centers, but velocity at cell faces


!

• Finite differences line up 

• ∇ · u and p at cell centers 

• Components of ∇p and u 
at cell faces
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Boundary conditions

• At solid obstacles, 

• Fluid cannot flow into or out of obstacles 

• At free surface, 

• Air applies negligible force on water

u · n̂ = 0

p = 0 p=0



Pressure solve

• Build a linear system with one equation per cell 

• Whole system: Ax = b, where 

• x is a vector containing all the pi,j 
b is a vector containing (∇ · u)i,j 
Rows of A contain stencil for ∇² 

• Be careful about boundaries!

(r2p)i,j = (r · u)i,j



Pressure solve

• Solve Ax = b to get pressure values p 

• A is large, sparse, symmetric, positive (semi)definite 

• Use e.g. preconditioned conjugate gradient method 

• Update velocities: unew = u�rp

Refer to Bridson & Müller-Fischer 2007 for full details



Viscosity
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• Often ignored: advection causes enough diffusion already 

!
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• For high-viscosity fluids, just use implicit integration
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Viscosity

Carlson, Mucha, Van Horn, and Turk, 2002



Smoke simulation

Lentine, Zheng, and Fedkiw, 2010



Surface tracking

• How to represent the surface of a liquid? 

Option 1: Level set method


• Store the signed distance to surface φ(x) on grid cells 

• Advect forward at each time step 

• Surface is the level set (isosurface) 
at φ = 0



Surface tracking

• How to represent the surface of a liquid? 

Option 2: Particles (easier)


• Keep lots of particles in the fluid,  
passively advected with the flow 

• Reconstruct surface as in SPH

Zhu and Bridson, 2005

More options: level set + particles,  
volume-of-fluid, meshes, …



Liquid simulation

English, Qiu, Yu, and Fedkiw, 2013



Real-time liquid simulation

Chentanez and Müller, 2011
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