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Grid-based fluid simulation

- Recap: Eulerian viewpoint

- Grid is fixed, fluid moves through it

- How does the velocity at a grid cell
change over time?



—ulerian and Lagrangian time derivatives

Consider a weather balloon moving with the wind,
measuring air temperature 7(x, )

California Gulf of Mexico



—ulerian and Lagrangian time derivatives

+ Consider a weather balloon moving with the wind.
't measures air temperature as 7(x(f), t)
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Velocity of balloon
= velocity of air

[Chain rule}




—ulerian and Lagrangian time derivatives
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Lagrangian derivative: Change due to movement
change seen by a point of fluid (“advection”)

moving with the fluid
H

|
Eulerian derivative:
change at a fixed point



The fluid equations

- Newton’s second law

- Forces:

Velocity Is u now
- Acceleration is Lagrangian:

Du Ou
a/, Di (‘%t u V,“\
Acceleration of Change at Flow advects

fluid “molecule” a grid cell tself!



The fluid equations

1
M v = (£~ Vp+ i)

p="1

- The Navier-Stokes equations

Millenium prize:
$1,000,000 to prove
(or disprove)
existence & smoothness
of solutions




Operator splitting

ou
ot

Lots of different terms; hard to integrate in one go
Deal with one term at a time

+ (ignoring all the others)



Operator splitting

0 for time At

for time At

for time At

for time At




Advection

- Transport a quantity (in this case, u) via the velocity field u

- Confusing! Let’s transport something else first

0A
ot

+ e.g. colour, temperature, concentration
of Ink In water / smoke in air / etc.

Fu-VA=0




Advection

L

An un An+1

Transport A by tracing backwards and looking up its value



Advection
Input: initial grid A?, velocity field u”
- Qutput: final grid A"+
- For each grid cell x;
. Backtrace position, e.g. x”** = x; — u; At

. Set output A7"! = interpolate A™ at xPak

1o advect velocities, just feed in u” as the initial grid too.



—xternal forces

- Gravity
Buoyancy strength
- Buoyancy l
fext — (T — Tamb)g
Temperature “Ambient”
of fluid temperature

- User interaction



—xternal forces

T

Lentine, Zheng, and Fedkiw, 2010




Praessure

Becker and Teschner, 2007



Incompressibility

- We will prohibit compressibility from our simulation.

Net flow into/out of region

Flow ://u-fldA
U :// V- -udV
n

Fixed surface [Divergence theorem]

We want net tflow to be O for all possible regions, so...

V - u = 0 everywhere



Praessure

ou 1
=
p="

Let’s just do forward Euler...



Praessure

V-u™" =0
Let’s just do forward Euler...

...and choose the p which makes u™" divergence-free

At
V- -u pv2p:0

gnore the p/At
ust a rescaling)

I[}
Vp=+-V-u
P~ A (



The Helmholtz-Hodge decomposition

- Equivalently: separate u into curl-free and divergence-
free components
...then throw away the curl-free part

Curl-free Divergence-free




Praessure

. We just have to solve V°p = V - u

- How?

+ Q1: How to evaluate V- and V2 on a grid

- Q2: How to store p and u on the grid in the first place



Finite differences in 1D

A () — }Lli% Az + h})L — A(x)

X  X+h

- On a grid, we only have samples at grid spacing Ax

A — A.
A/ ~ 1+1 ')
’ Ax
A; — A+
A/ ~ ) )
or i A
or A/ ~ Ai—l—l T Ai—l




Finite differences in 2D
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- Apply forward and backward differences
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Five point stencil for the Laplacian
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Staggered (marker-and-cell) grids

Store pressure at cell centers, but velocity at cell faces

Witl,j — Wiy | Vij+1 = Yiyj
(V)i ~ |

Ax Ax

Finite differences line up
V - u and p at cell centers

Components of Vp and u
at cell faces

P Y Pij+1 4 P
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Soundary conditions

- At solid obstacles, u-n =0
- Fluid cannot flow into or out of obstacles
- At free surface, p =0

- Alr applies negligible force on water




Prassure solve

Build a linear system with one equation per cell
(VZp)ij = (V)i
- Whole system: Ax = b, where
X IS a vector containing all the pj;
b is a vector containing (V - u);;
Rows of A contain stencil for V2

Be careful about boundaries!



Prassure solve

+ Solve Ax = b to get pressure values p
-+ Ais large, sparse, symmetric, positive (semijdefinite
- Use e.g. preconditioned conjugate gradient method

n

- Update velocities: u™™" =u — Vp

Refer to Bridson & Muller-Fischer 2007 for full detalls



Viscosity

Ju  poo
E—qu

- Often ignored: advection causes enough diffusion already

. B

- For high-viscosity fluids, just use implicit integration

ulewv — uold + Hv2unewAt
P




Viscosity

Carlson, Mucha, Van Horn, and Turk, 2002



Smoke simulation

T

Lentine, Zheng, and Fedkiw, 2010




Surface tracking

- How to represent the surface of a liquid?

Option 1: Level set method

- Store the signed distance to surface ¢(x) on grid cells
- Advect forward at each time step

- Surface is the level set (isosurface)
atp =0




Surface tracking

How to represent the surface of a liquid?
Option 2: Particles (easier)

Keep lots of particles in the fluid,
nassively advected with the flow

Reconstruct surface as in SPH

More options: level set + particles,
volume-of-fluid, meshes, ...

/Zhu and Bridson, 2005



Liquid simulation

English, Qiu, Yu, and Fedkiw, 2013



Real-time liguid simulation

B Regular Cell
B Tall Cell
B Terrain

Chentanez and Muller, 2011



References

- Bridson and Muller-Fischer, “Fluid Simulation for
Computer Animation”, SIGGRAPH 2007 course notes

- Stam, “Stable Fluids”, 1999

- Enright, Marschner, and Fedkiw, “Animation and
Rendering of Complex Water Surfaces”, 2002

-+ /Zhu and Bridson, “Animating Sand as a Fluid”, 2005
(for particle-based surface tracking, and more)



