The Neural Basis of Thought and Language

Week 14
Administrivia

- Final exam review session Monday
 - 7-9pm in 310 Soda
- Final in class next Thursday, May 8th
- Be there on time!
- Format:
 - closed books, closed notes
 - short answers, no blue books
- Final paper due on bSpace on Monday, May 11
Questions

1. How does the analyzer use the constructions to parse a sentence?
2. How can we learn new ECG constructions?
3. What are ways to re-organize and consolidate the current grammar?
4. What metric is used to determine when to form a new construction?
Analyzing “You Throw The Ball”

FORM (sound)
- t1 before t2
- t2 before t3
- “you”
- “throw”
- “the”
- “ball”
- “block”

MEANING (stuff)
- t2.thrower ↔ t1
- t2.throwee ↔ t3
- Addressed addressee subcase of Human
- Schema Throw roles:
 - thrower
 - throwee
- Schema Ball subcase of Object
- Schema Block subcase of Object

Schema
- Throw
 - thrower
 - throwee
- Ball
 - subcase of Object
- Block
 - subcase of Object
Do not forget the SemSpec!
create a recognizer for each construction in the grammar
for each level j (in ascending order)

repeat

for each recognizer r in j

for each position p of utterance

initiate r starting at p

until we don't find anything new
Recognizer for the Transitive-Cn

- an example of a level-1 construction is Red-Ball-Cn
- each recognizer looks for its constituents in order (the ordering constraints on the constituents can be a partial ordering)
Questions
1. How does the analyzer use the constructions to parse a sentence?
2. How can we learn new ECG constructions?
3. What are ways to re-organize and consolidate the current grammar?
4. What metric is used to determine when to form a new construction?
1. Learner passes input (Utterance + Situation) and current grammar to Analyzer.

3. Learner updates grammar:
 a. Hypothesize new map.
 b. Reorganize grammar (merge or compose).
 c. Reinforce (based on usage).
Usage-based Language Learning

(Utterance, Situation) → Analyze → Partial Analysis → Comprehension

Constructions

Reorganize

(Hypothesize) → (Utterance, Situation) → Generate → Utterance → Production

(Comm. Intent, Situation)
Basic Learning Idea

- The learner’s current grammar produces a certain analysis for an input sentence.
- The context contains richer information (e.g. bindings) that are unaccounted for in the analysis.
- Find a way to account for these meaning relations (by looking for corresponding form relations).
Initial Single-Word Stage

FORM (sound)

"you"

"throw"

"ball"

"block"

lexical constructions

you

throw

ball

block

MEANING (stuff)

schema Addressee subcase of Human

schema Throw roles: thrower throwee

schema Ball subcase of Object

schema Block subcase of Object
New Data: “You Throw The Ball”
Relational Mapping Scenarios

throw ball \leftrightarrow throw.throwee \leftrightarrow ball

put ball down \leftrightarrow put.mover \leftrightarrow ball

down.tr \leftrightarrow ball

Nomi ball \leftrightarrow possession.possessor \leftrightarrow Nomi
possession.possessed \leftrightarrow ball
Questions

1. How does the analyzer use the constructions to parse a sentence?
2. How can we learn new ECG constructions?
3. What are ways to re-organize and consolidate the current grammar?
4. What metric is used to determine when to form a new construction?
Merging Similar Constructions

throw the block

throw before block

throw before Object

Throw.throwee = Block

throw before ball

Throw.aspect = ongoing

throw the block

THROW.throwee = Object

throw before-thing

THROW-OBJECT

throwing the ball

Throw.throwee = Ball

throw before-thing

Throw.aspect = ongoing
Resulting Construction

construction THROW-OBJECT

constructional

constituents

\(t : \text{THROW} \)

\(o : \text{OBJECT} \)

form

\(t_f \) before \(o_f \)

meaning

\(t_m \cdot \text{throwee} \leftrightarrow o_m \)
Composing Co-occurring Constructions

\[\text{throw the ball} \]
\[\text{throw before ball} \]
\[\text{ball before off} \]
\[\text{ball off} \]
\[\text{THROW-BALL-OFF} \]

Throw.throwee = Ball
Motion m
m.mover = Ball
m.path = Off

Motion m
m.mover = Ball
m.path = Off
Resulting Construction

construction THROW-BALL-OFF

constructional

constituents

\(t : \text{THROW} \)
\(b : \text{BALL} \)
\(o : \text{OFF} \)

form

\(t_f \text{ before } b_f \)
\(b_f \text{ before } o_f \)

meaning

evokes \text{MOTION as} m

\(t_m \text{-throwee } \leftrightarrow b_m \)
\(m \text{-mover } \leftrightarrow b_m \)
\(m \text{-path } \leftrightarrow o_m \)
Questions

1. How does the analyzer use the constructions to parse a sentence?

2. How can we learn new ECG constructions?

3. What are ways to re-organize and consolidate the current grammar?

4. What metric is used to determine when to form a new construction?
Size Of Grammar

- Size of the grammar G is the sum of the size of each construction:

$$size(G) = \sum_{c \in G} size(c)$$

- Size of each construction c is:

$$size(c) = n_c + m_c + \sum_{e \in c} length(e)$$

where

- $n_c = \text{number of constituents in } c$,
- $m_c = \text{number of constraints in } c$,
- $length(e) = \text{slot chain length of element reference } e$
Example: The Throw-Ball Cxn

construction THROW-BALL

constructional constituents
- t : THROW
- b : BALL

form
- t_f before b_f

meaning
- t_m.throwee ↔ b_m

$$size(c) = n_c + m_c + \sum_{e \in c} length(e)$$

$$size(\text{THROW-BALL}) = 2 + 2 + (2 + 3) = 9$$
Complexity of Data Given Grammar

- Complexity of the data D given grammar G is the sum of the analysis score of each input token d:

$$\text{complexity}(D \mid G) = \sum_{d \in D} \text{score}(d)$$

- Analysis score of each input token d is:

$$\text{score}(d) = \sum_{c \in d} \left(\text{weight}_c + \eta \cdot \sum_{r \in c} |\text{type}_r| \right) + \text{height}_d + \text{semfit}_d$$

where

- c is a construction used in the analysis of d
- $\text{weight}_c \approx$ relative frequency of c,
- $|\text{type}_r|$ = number of ontology items of type r used,
- height_d = height of the derivation graph,
- semfit_d = semantic fit provide by the analyzer
Minimum Description Length

- Choose grammar G to minimize $\text{cost}(G|D)$:
 - $\text{cost}(G|D) = \alpha \cdot \text{size}(G) + \beta \cdot \text{complexity}(D|G)$
 - Approximates Bayesian learning;
 $\text{cost}(G|D) \approx 1/\text{posterior probability} \approx 1/P(G|D)$

- **Size of grammar** = $\text{size}(G) \approx 1/\text{prior} \approx 1/P(G)$
 - favor fewer/smaller constructions/roles; isomorphic mappings

- **Complexity of data given grammar** $\approx 1/\text{likelihood}$
 $\approx 1/P(D|G)$
 - favor simpler analyses
 (fewer, more likely constructions)
 - based on derivation length + score of derivation
Final Remark

- The goal here is to build a cognitive plausible model of language learning.

- A very different game that one could play is unsupervised/semi-supervised language learning using shallow or no semantics:
 - statistical NLP
 - automatic extraction of syntactic structure
 - automatic labeling of frame elements

- Fairly reasonable results for use in tasks such as information retrieval, but the semantic representation is very shallow.