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Abstract
We present a connectionist realization of parameterized schemas that can model high-

level sensory-motor processes and be a candidate representation for implementing reactive
behaviors. The connectionist realization involves a number of ideas including the use of
focal-clustersand feedback loops to control a distributed process without a central con-
troller and the expression and propagation of dynamic bindings via temporal synchrony.
We employ a uniform mechanism for interaction between schemas, low-level somatosen-
sory and proprioceptive processes, and high-level reasoning and memory processes. Our
representation relates to work in connectionist models of rapid —reflexive— reasoning
and also suggests solutions to several problems in language acquisition and understanding.

�This Technical Report is the final manuscript of an article completed in June 1999 that is to appear as a chapter in the book
Hybrid Information Processing in Adaptive Autonomous vehicles,G.K. Kraetzschmar and G. Palm (Eds.), Springer-Verlag, Berlin.
The publication of the book, however, has been delayed, and hence, the article is being released as a technical report.Contact:
shastri@icsi.berkeley.edu ; http://www.icsi.berkeley.edu/ �shastri/shruti



ii



1 Introduction

Performing goal-directed behavior in an uncertain and dynamic environment requires an agent to use repre-
sentations that tightly couple action and reaction and that are highly responsive to environmental, intentional,
and motivational changes. Consider an agent performing simple actions such aspull, push, crawl, graspor
walk. Even these simple actions require that the agent be capable of controlling and coordinating multiple
sub-actions (such aspreshapingthe hand whilereachingfor the object to be pushed), be highly reactive to
perceptual and motor inputs (e.g., avoid obstacles while walking), be able to monitor execution and progress,
and be able to recover from minor failures (e.g., recover from temporary instability while walking).

In this article we describe a connectionist architecture for encoding high-level sensorimotor processes,
actions, and reactive behavior. Our long-term goal is to develop an architecture that is both neurally plausible
and representationally adequate. Hence the architecture described below is both influenced by recent findings
in biological motor control as well as informed by work on computational modeling of actions and reactive
behavior.

1.1 Biological control theory

Ever since Bernstein’s [Ber67] pioneering work, researchers in biological control theory have widely ac-
cepted the notion ofmotor synergies, which are sub-cortical parameterized continuous feedback controllers
for stereotypical motions such as the vestibulo-ocular reflex.

The temporal details of motor actions are often mediated by afferent feedback. The Hering-Breuer reflex
in the mammalian respiratory system is a good example of this phenomena. Here, feedback from the pul-
monary stretch receptors activated during lung inflation terminates the respiratory phase [Fel86]. Researchers
have also investigated the role of afferent signals in the walking system of the cat, where a sensory signal at
the end of the stance phase switches the motor program from stance to swing. [Pea93] reviews the various re-
sults and hypotheses regarding the role of afferent feedback in vertebrate and invertebrate motor control. Not
surprisingly, he concludes that in order to produce effective movements, motor output must be synchronized
and coordinated with ongoing positions, forces and movements in peripheral structures. In general, feedback
signals are important for establishing the execution trajectory of motor programs; they may reinforce ongoing
motor activity or conversely help switch from one synergy to another.

In order to perform an action, we often need to execute multiple movements in a specific temporal order.
Thus the control of complex actions requires the coordination of multiple synergies (a motor plan). After
repetitive performance of a particular temporal arrangement of movements, we are able to memorize and
execute the whole sequence without external guidance. Where and how in the brain do we store information
necessary for the orderly performance of multiple movements?

Evidence that points to the existence of pre-compiled motor plans for complex movements comes from
Sternberg and his colleagues [SMKW78] who focus on delays in starting or stopping typing sequences de-
pending upon the length of the string to be typed. Work on grasping and picking up a ball [Jea97] demon-
strates the need for concurrent activation of multiple synergies (arm movement and preshaping), serial execu-
tion, error-correction based on perceptual input [Arb94], and timed cerebellar modulation [Bul95]. The use
of the wordschemato explicitly refer to the neural representation of such parameterized action controllers
appears to have been coined by Head [Hea20] to refer to posture maintenance and control. However, the first
proposal thatschemasincluded storage of movement related information, including predicted outcomes and
error information to drive learning, was perhaps made by Schmidt [Sch75].

More recent work provides important clues about the possible site of motor schemas in the brain. Tanji
and Shima [TS94] have found that the cerebral cortex of monkeys contains cells whose activity is exclusively
related to a sequence of coordinated multiple movements. They found such activity in the supplementary
motor cortex (1, 2) and have hypothesized that these cells contribute a signal about the control of anticipated
movements for planning several movements ahead.

Recent evidence also suggests that some motor areas involved in planning motor sequences are active
even when actions are only thought about, for example, during mental imagery and imitative imagination
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[GFFR96, GAFR96, RGF96]. These and related findings suggest that uniform representational mechanisms
might underlie high-level motor control and motor imagery.

1.2 AI and Robotics

In AI, formal approaches to model the ability to reason about changing environments have a long tradition.
This research area was initiated by McCarthy [MH69], who observed that reasoning about actions plays a
fundamental role in common sense. An advantage of deductive approaches to reasoning about actions is the
universality inherent in any logical framework. A purely logical axiomatization which is suitable for temporal
prediction, can just as well be employed to answer more general questions such aspostdiction(i.e., what can
be concluded form the current state as to states in the past) andplanning(i.e., how to act in order that the
system evolves into a desired state).

However, deductive approaches have suffered from several well known problems, the most famous of
which, theframe problem, pertains to compactly specifying aspects of world that are unchanged when an
action is executed. A number of associated problems and proposed solutions can be found in [Lif90]. Ad-
ditionally, formal theories of action and change often make the assumption that environmental changes only
occur as a result of some agent-initiated action [GL95]. This assumption is unduly restrictive and renders such
systems incapable of dealing with any environment where changes may occur independent of agent-initiated
action.

The above problems combined with the need to generate real time behavior in complex and dynamic
environments renders deliberative reasoning about the effects of low-level action impractical. Recognition
of this fact in AI and Robotics has resulted in various proposals for the representation and use of compiled
plans and behaviors [Ros85, Bro86, Nil94, Ark90, AC87]. The basic idea is that rather than divide overall
process of acting in the world into functional components such as planning, execution, and perception, one
could instead divide the process into task specific pre-compiled plans for variousbehaviors. Examples of
such behaviors may involve reaching, grasping, walking to a destination, stacking blocks, etc.

The basic insight here is that the necessity to act fast in an uncertain and dynamic world requires reactive
planning agents (biological or robotic) to use representations that can tightly couple action, execution moni-
toring, error-correction and failure recovery. These are computationally quite similar to the schemas used in
the biological motor control literature.

Taken together, the biological and AI results suggest that reactive plans or action schemas areexecutable
representationsthat are capable of monitoring, controlling and coordinating multiple synergies. Moreover,
such schemas cannot just be pre-compiled behaviors since they must be capable of flexible execution based on
the run-time setting (or binding) of parameter values and continuously monitoring and responding to changes
in in the world state. These findings impose strong requirements on the representational properties of action
schemas.

1.2.1 X-Schemas.

In what follows, and elsewhere [FB98], we refer to parameterized action schemas asx-schemas. The prefix
“x” stands forexecutingand is meant to emphasize that x-schemas are active representations thatexecute
upon invocation. The latter attribute also distinguishes x-schemas from the more static or declarative senses
of schemas prevalent in the AI and psychology literature.

1.3 Computational Requirements

In order to identify computational requirements for modeling x-schemas, let us consider the problem of
realizing a controller for thepushingbehavior. A high-level characterization of this behavior is depicted
in Fig. 1. While this depiction involves several simplifications, it serves to illustrate the key computational
requirements.
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In the figure, there are three types of nodes. Circles (places) represent states including preconditions and
resources. Rectangles (transitions) represent atomic actions and events. Hexagons depict actions that may
be hierarchically decomposed into sub-actions. For binary conditions the presence of atoken(a black dot)
specifies that the condition holds in the current state. For measurable fluents and resources an integer number
of tokens specifies the value or measure of the fluent (by default this value is 1). The current state of the
system (called amarking) can be read off as the distribution of tokens in the graph. Execution corresponds
to the firing of transitions. The firing of a transition changes the marking by removing tokens from the
input places (resources) and adding tokens to the output places (effects) of the transition. Note that the actual
execution trajectory is conditioned both by the structure of the graph as well as externally supplied parameters
such as object and force-level.1

preshape

estimate_mass(object1)
locate_object(object1)

reach( loc1)

apply_force(object1, medium)

������

ok(vision)

upright

ready
prepare

medium
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Roles/Parameters

start finishongoing done

iterate

object1

�
�
�
�

Figure 1: A simplified x-schema for the push action.

Once activated, thepushx-schema controls the execution of the pushing behavior. The behavior is de-
composable into a temporal arrangement of several sub-actions. Some of these sub-actions may be primitive
(corresponding to motor synergies in biological control), others may be further decomposable. Only the first-
level refinement of of the push behavior is depicted. The behavior can be further decomposed into constituent
synergies that make up sub-actions such aslocateobject, estimatemass, reach, preshape, andapply force.

The actual execution trajectory is conditional on the results of perceptual tests and/or world inputs. For
example, the basic cycle oflocateobject) estimatemass) readyof thepushx-schema may be modified
if locateobjectfails. On the other hand, if the object to be pushed is already in the visual field, then the agent
may completely bypass thelocateobjectphase. Theapply force x-schema continues (at a force specified
by the force input parameter) until the agent receives information (asynchronously from a proprioceptive or
perceptual process) that the object to be pushed has been pushed as desired. At this point, the process of
pushing is complete.

In general x-schemas must satisfy a number of computational requirements.

1Our informal description of thepushx-schema can be made more precise in terms of a formal computational model based on
extensions to Petri Nets [Mur89]. Narayanan [Nar99] has shown that x-schemas for modeling high-level motor plans are formally
equivalent to a High Level Generalized Stochastic Petri Net (HLGSPN) and the reachability graph of a marked x-schema is isomorphic
to a semi-markov process.
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� Run-time setting of parameters and role-bindings: An x-schema should be applicable to a wide
range of situations. For example, it should be possible to adapt the same x-schema to push either a book
or a keyboard away from you (or perhaps, even to push open a door). Similarly, it should be possible
to adapt the same x-schema to gently push away a book or to forcefully shove it away. This requires
that x-schemas be able todynamically bindto different entities at run time and be able to execute with
differentparameter settings. In Fig. 1, the push x-schema is shown to have one roleobjectwhich is
meant to specify the entity to be pushed, and one parameterforcewhich provides a scalar measure of
the force to be applied to the entity during the push action. Other relevant parameterizations include
direction(push versus pull). As an additional example, consider theWALK schema, this schema may
have a role fordestinationwhich may be bound to different landmarks at run-time (as in walk to the
store). The need for encoding dynamic bindings and supporting run-time parameters distinguishes an
x-schema from the simpler notion of a pre-compiled program.

� Coordination and control: Basic control behaviors should be modeled. This includes support for the
following:

– Partially ordered actions.

– Conditional actions, i.e., the ability to choose one of several alternative actions based on the
evaluation of specific.

– Concurrent and iterative actions.

– Compositional and hierarchical actions, i.e., x-schemas may be composed of other x-(sub)schemas.

� Distributed control architecture : X-schemas should function without a central controller. In particu-
lar, local control mechanisms should give rise to controlled behavior on a more global scale.

� Responsiveness: An x-schema must beresponsiveto both internal and external events. In particular,

– An x-schema should be capable of event-based interruption and termination.

– An x-schema must be responsive to the production and consumption ofresources. This includes
fluents such as energy and force.

� A broad notion of action: x-schemas should support a broad notion of action. This includes

– Actions that affect the environment as well as actions that seek information from the environment.

– Actions that update memory and actions that seek information from memory. The latter includes
retrieval as well as inference.

The requirements above serve as a minimal set of properties to be satisfied by any representation of
reactive plans and x-schemas.

In what follows we describe a neurally plausible (connectionist) implementation of x-schemas which
satisfies several of the computational requirements enumerated above. This implementation draws upon our
earlier work on “routines” [SF86] and more recent work onSHRUTI2, a connectionist model of reflexive
reasoning [SA93]. Section 2 provides an overview ofSHRUTI. This is followed by a description of the
connectionist encoding of x-schemas in Sect. 3. Section 4 briefly discusses the intimate relation between
x-schemas, language acquisition, and certain aspects of language understanding.

2http:://www.icsi.berkeley.edu/ �shastri/shruti
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2 An Overview of SHRUTI

SHRUTI was initially developed to model our remarkable ability to draw common sense inferences with refer-
ence to a large body of semantic, episodic, and causal knowledge. Subsequently, work on language acquisi-
tion, especially early language acquisition in children [FLB+96, Nar97a, BFNL97] lead us to the realization
that bodily grounded representations of actions must play a crucial role in supporting a variety of common
sense inference. This realization was based in part on the insight that the very representation used forcarrying
outan action must also subserve theunderstandingof that action. Furthermore, in many cases, understanding
an utterance about an action may involve mentally simulating the action using the representational machinery
required for its execution.

Our belief in a strong coupling between inference and simulated action motivated us to seek a connec-
tionist realization of x-schemas that was compatible withSHRUTI. As we shall see, the x-schemas encoding
described in Sect. 3 is not only compatible withSHRUTI, it also makes use of the representational machinery
used inSHRUTI for the representation of conceptual knowledge.

2.1 Motivation behind the SHRUTI model

The task of understanding language involves, among other things, recognizing words, disambiguating word
senses, incorporating grammatical constraints, and drawing inferences based on common sense knowledge
to establish causal and referential coherence.3 Yet we can understand language at the rate of several hundred
words per minute. This suggests that we are capable of performing the requisite inferences rapidly, automat-
ically, and without conscious effort — as though they were areflexiveresponse of our cognitive apparatus
[Sha93].

This remarkable human ability poses a challenge for computational theories of intelligence and compu-
tational neuroscience: How can a system of slow neuron-like elements represent a large body of knowledge
and perform a wide range of inferences with such speed?

We construe a bulk of what we read and hear in terms of events and situations. The latter are relational
structures, and hence, their representation requires the coding ofbindingsbetween therolesof an appropriate
relation and theentitiesthat fill these roles in a given event or situation [SA93]. Consequently, any neurally
plausible model of reflexive reasoning should also explain how a system of neuron-like elements can rapidly
encode and propagate a large number of bindings.

SHRUTI has been proposed as a neurally motivated computational model of relational information pro-
cessing and reflexive reasoning [AS91, SA93, MS83, SG96, Sha99a, SW99b, SW99a]. The model proposes
that the encoding of relational information is mediated by neural circuits composed of focal-clusters and
the dynamic representation and communication of relational instances involves the transient propagation of
rhythmicactivity across these clusters. A role-entity binding is represented within the rhythmic activity by
the synchronous firing of appropriate cells within focal-clusters. Systematic rule-like knowledge is encoded
by high-efficacy links that enable the propagation of rhythmic activity across focal-clusters. A fact encodes
persistent bindings and fires when the bindings it encodes match the dynamic bindings encoded in the on
going flux of rhythmic activity.

SHRUTI also identifies constraints on the capacity of the dynamic (working) memory underlying reflexive
reasoning. First, on the basis of neurophysiological data pertaining to the occurrence of synchronous activity
in the
 band, it predicts that a large number of relational instances can be active simultaneously and a large
number of rules can fire in parallel. However, the number of distinct entities participating as role-fillers in
these active relational instances and rules must remain very small (� 7) [SA93]. Second, since the quality
of synchronization degrades as activity propagates along a chain of cell clusters,SHRUTI predicts that as the

3Causal coherence refers to the establishment of causal relationships among various events mentioned in a discourse. Referential
coherence involves keeping track of entities referenced in a discourse and determining which entities are the same. It is well known
that inferences required to establish causal and referential coherence occur rapidly and automatically during text understanding (see
e.g., [Kin88, MR80, KBB84]). The evidence for the automatic occurrence of predictive inferences is mixed, but the occurrence of such
inference cannot be ruled out [PKG88].
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Figure 2: An exampleSHRUTI network. Links between the mediator and type structure have been omitted.
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depth of inference increases, binding information is gradually lost and systematic inference reduces to a mere
spreading of activation. Third,SHRUTI predicts that only a small number of instances of any given relation
can be active simultaneously.

An implementation ofSHRUTI on the CM-5 [Man95] can encode over 500,000 rules and facts, and yet
respond to a range of queries requiring derivations of depth five in under 250 milliseconds.

2.2 Representational Machinery ofSHRUTI

A description ofSHRUTI requires the specification of itsstructureas well as a description of itsdynamic
behavior. The following simple example illustrates the basic representational machinery ofSHRUTI. The
example has been kept simple. In general, the model can encode positive as well as negated information;
deal with inconsistent beliefs; represent rules with multiple antecedents and multiple consequents, exhibit
priming effects, support context-sensitive unification of entities, and tune network weights and rule-strengths
via supervised learning [Sha99a, SW99a]. Figure 2 illustrates a partial encoding of the following knowledge
consisting of rules, facts, and type relationships:

1. 8(x:agent y:agent z:thing) give(x,y,z)) own(y,z) [800,800];

2. give(John, Mary, Book-17) [1000];

3. is-a(John, Human);

4. is-a(Mary, Human);

5. is-a(Human, Agent);and

6. is-a(Book-17, Book);

Rule (1) states that when an entity of typeagentgives something to another entity of typeagent, then the
latter comes to own it. Fact (2) states that John gave Mary a particular book (Book-17). A discussion
of how SHRUTI deals with evidence combination appears in [SW99a], for our purpose it suffices to note
the following: The weight [a] associated with a fact indicates the strength of belief in the fact. The pair of
weights [a,b] associated with a rule indicates that the degree of evidential support for the antecedent being the
probable cause (or explanation) of the consequent isa, and the degree of evidential support for the consequent
being a probable effect of the antecedent isb. Weights inSHRUTI lie in the interval [0,1000].

2.2.1 Encoding Relations Using Focal-Clusters.

Each generic relation is represented by a focal-cluster depicted by a dotted ellipse in Fig. 2. Consider the
focal-cluster for the relationgive (the dotted ellipse labeledGive). This cluster includes an enabler node
labeled?:give, two collector nodes labeled+:give and-:give, and three role nodes labeledgiver, recipient
andgive-objectfor its three roles. The positive and negative collectors are mutually inhibitory (inhibitory
links are depicted by filled blobs). In general, the focal-cluster for ann-place generic relation containsn role
nodes.

Nodes are computational abstractions and correspond tosmall ensembles of cells, and a connection from
a node A to a node B corresponds to several connections from cells in the A ensemble to cells in the B
ensemble.SHRUTI makes use of several node types. Two key node types are described below in Sect. 2.2.3.

Assume that the roles of a relationP have been dynamically bound to some fillers and thereby represent
an active instance ofP. The activation of the enabler?:P means that the system is seeking an explanation for
the active instance ofP. In contrast, the activation of the collector+:P means that the system is affirming
the active instance ofP. Similarly, the activation of the collector-:P means that the system is affirming the
negation of the active instance ofP.

The activationlevelof ?:P signifies the strength with which information aboutP is being sought. Simi-
larly, the activationlevelof +:P (-:P) signifies the (graded) degree of belief in the truth (falsity) of the active
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instance ofP. This belief ranges fromno on the one extreme (only-:P is active), toyeson the other extreme
(only +:P is active), anddon’t knowin between (neither collector is very active). A contradiction is indicated
if both the collectors receive comparable and strong activation.

The link from the collector nodes to the enabler node of a generic relation converts a dynamic assertion
of a relational instance into a query about the assertion. This means that the system continually seeks support
(or an explanation) for active assertions.

2.2.2 Encoding of types and instances.

This encoding is illustrated at the right of Fig. 2. The focal-cluster of each entity,A consists of a?:A and
a +:A node. In contrast, the focal-cluster of each type,T consists of a pair of? (?e:Tand?v:T) and a pair
of + nodes (+e:T and+v:T). While the nodes+v:T and?v:T participate in expression of facts involving the
whole typeT, the nodes+e:T and?e:Tparticipate in the encoding facts involving particular instances of type
T. The levelsof activation of?:A, ?v:T, and ?e:Tnodes signify the strength with which information about
entity A, typeT, and an instance of typeT, respectively, is being sought. Similarly, thelevelsof activation
of +:A , +v:T, and+e:T signify the degree of belief that the entityA, the typeT, and an instance of typeT,
respectively, play appropriate roles in the current situation.

2.2.3 Node Types.

SHRUTI makes use of four node types: m-�-nodes,� -and nodes,� -or nodes of type 1, and� -or nodes of
type 2. This classification is based on thecomputationalproperties of nodes. Thus nodes serving different
representational functions can be of the same type. The computational behavior of m-�-nodes and� -and
nodes is as follows:
m-� nodes: An m-� node with threshold� becomes active and fires upon receiving� units of synchronous
activity. Here synchrony is defined relative to a window of temporal integration!. An m-� nodeA receiving
above-threshold periodic inputs from both nodesB andC (whereB andC may be firing in different phases)
will respond by firing in phase with bothB andC.4 Roles are encoded using m-� nodes.
� -and nodes:A � -and node becomes active on receiving an uninterrupted and above-threshold input over an
interval� �max, where�max is a system parameter. Computationally, such input can be idealized as a pulse
whose amplitude exceeds the threshold, and whose duration is greater than or equal to�max. Physiologically,
such an input may be identified with a high-frequency burst of spikes. Thus a� -and node behaves like a
temporal andnode and becomes active upon receiving adequate and uninterrupted inputs over an interval
�max. Upon becoming active, such a node produces an output pulse of width� �max.5 Collectors and
enablers are encoded using� -and nodes.

2.2.4 Representation of Dynamic Bindings.

Dynamicbindings between roles and entities are represented by thesynchronousfiring of appropriate role
and entity nodes. With reference to Fig. 2, the dynamic representation of the relational instance(give:
hgiver=Johni, hrecipient=Maryi, hgive-object=a Booki) (i.e., “John gave Mary a book”). involves the syn-
chronous firing of+:John andgiver, the synchronous firing of+:Mary andrecip, and the synchronous firing
of +e:Bookandg-obj, with the entities+:John, +:Mary and+e:Bookfiring in distinct phases.

The possible role of synchronous activity in dynamic neural representations has been suggested by other
researchers (e.g., [vdM86]) butSHRUTI is the first detailed computational model that shows how synchronous
activation can be harnessed to solve problems in the representation and processing of high-level conceptual
knowledge. There exists a rich body of neurophysiological evidence that suggests that synchronous activity
might indeed play an important role in neural information processing (see [Sin93]).

4Each m-� node has an associatedactivation combination function(ECF). The strength of activity of an m-� node in any given phase
is computed by the node’s ECF by combining the weighted inputs arriving at the node in that phase [SW99a]. The strength of firing of
a node in a given phase may be viewed as being related to the fraction of cells in the node’s cluster firing in that phase.

5As in the case of m-�-nodes, the level of output activity of a� -and node is determined by an ECF associated with the node.
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2.2.5 Encoding of rules.

A rule is encoded via a mediator focal-cluster (shaded region in Fig. 2) that mediates the flow of activity
between the antecedent and the consequent focal-clusters. The mediator consists of a collector and an enabler
node and as many role-instantiation nodes as there are distinct variables in the rule. The encoding of a
rule establishes links between nodes in the antecedent, consequent, and mediator focal-clusters as follows:
(i) The roles of the consequent relations are linked to the roles of the antecedent relations via appropriate
role-instantiation nodes in the mediator. This linking reflects the correspondence between antecedent and
consequent roles specified by the rule. (ii) The enablers of the consequent relations are connected to the
enablers of the antecedent relations via the enabler of the mediator. (iii) The appropriate (+/–) collectors
of the antecedent relations are linked to the appropriate (+/–) collectors of the consequent relations via the
collector of the mediator. A collector to collector link originates at the + (–) collector of an antecedent
relation if the relation appears in its positive (negated) form in the antecedent. The link terminates at the +
(–) collector of a consequent relation if the relation appears in a positive (negated) form in the consequent.

If a role-instantiation node receives activation from the mediator enabler and one or more consequent role
nodes, it simply propagates the activity onward to the connected antecedent role nodes. If on the other hand,
the role-instantiation node receives activity only from the mediator enabler, it sends activity to the?:e node
of the type specified in the rule as the type restriction for this role. This causes the?:e node of this type to
become active in an unoccupied phase. The?:e node of the type conveys activity in this phase to the role-
instantiation node which in turn propagates this activity to connected antecedent role nodes. This interaction
between the mediator and the type representation, in effect, creates activity corresponding to “Does there
exist some role filler of the specified type?”

2.2.6 Encoding of facts.

SHRUTI encodes two types of facts in its long-term memory: episodic facts (E-Facts) and taxon facts (T-facts).
These facts provide closure between the enabler node and the collector nodes. While an E-fact corresponds to
a specific instance of a generic relation, a T-fact corresponds to a distillation or statistical summary of various
instances of a generic relation and can be viewed as codingprior probabilities. In general, T-facts can be
conditioned on the type of role-fillers (e.g., the T-factbuy(a-person,a-Car) [50]encodes the likelihood that
an arbitrary person will buy a car).

2.3 An example of inference

Figure 3 depicts a schematized response of theSHRUTI network shown in Fig. 2 to the query “Does Mary
own a book?” (exists x:Book own(Mary, x)?). This query is posed by activating?:Mary and?e:booknodes,
the role nodesownerando-obj, and the enabler?:own, as shown in Fig. 3. We will refer to the phases
of activation of?:Mary and?e:bookas�1 and�2, respectively. Activation from the focal-cluster forown
reaches the mediator structure of rules (1) and (2). Consequently, nodesr2 andr3 in the mediator for rule
(1) become active in phases�1 and�2, respectively. At the same time, the activation from?:ownactivates
the enabler?:med1in the mediator of rules (1). Sincer1 does not receive any activation from any role in its
consequent’s focal-cluster (own), it activates the node?e:agentwhich becomes active in a free phase (say�3)
and, in turn, activatesr1 in this phase. The activation from nodesr1, r2 andr3 reach the rolesgiver, recip
andg-obj in thegivefocal-cluster, respectively. In essence, the system has created new bindings for thegive
relation. These bindings together with the activation of the enabler node?:giveencode the new query: “Did
some agentgive Mary a book?”. At the same time, activation travels in the type hierarchy and maps the query
to a large number of queries such as “Did a human give Mary a book?” and “Did John give Mary Book-17?”.
The factgive(John, Mary, Book-17)now becomes active as a result of matching the querygive(John, Mary,
Book-17)?and causes+:give to become active. This in turn causes+:med1, to become active and transmit
activity to+:own. This results in an affirmative answer to the query “Does Mary own a book?” and creates a
reverberant loop of activity involving the focal-clusters forown, med1, give, fact F1, and entitiesJohn, Mary,
andBook-17.
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The encoding of rules by the explicit encoding of the inferential dependency between relations, in con-
junction with the use of temporal synchrony, provides an efficient mechanism for propagating bindings and
performing reasoning. Conceptually, the proposed encoding of rules creates a directedinferential dependency
graphand the evolution of the system’s state of activity corresponds to aparallelbreadth-first traversal of this
inferential dependency graph. Consequently, the time taken to perform an inference is simply proportional to
the depth of its derivation and is otherwise independent of the number of items in the knowledge base.

3 Connectionist Encoding of X-Schemas

The connectionist encoding of x-schemas involves a number of ideas including the use of focal-clusters and
feedback loops to control a distributed process without a central controller, the expression and propagation of
dynamic bindings via temporal synchrony, and a uniform mechanism for interaction between x-schemas, low-
level somatosensory and proprioceptive processes, as well as high-level reasoning and memory processes. As
we shall see, many of the connectionist representational mechanisms used in the encoding of x-schemas have
been drawn fromSHRUTI.

The network structure enclosed within the dotted hexagon in Fig. 4 shows a partial connectionist encoding
of the PUSH x-schema shown in Fig. 1. The connectionistPUSH x-schema is an interconnected network of
focal-clusters (depicted as ovals). The latter provide a locus of control and coordination, and a mechanism for
exchanging role-bindings and parameter settings between components of the x-schema. The components of
an x-schema can either be local to the x-schema, or they can be generic x-schemas shared by other x-schemas.
For example, thePUSHx-schema has as its components generic x-schemas such asLOCATE-OBJECT. These
are depicted as hexagons situated outside thePUSHx-schema.

Other x-schemas can invoke thePUSHx-schema by activating theENABLE focal-cluster near the bottom
of Fig. 4 and by communicating the appropriate parameter values and role bindings to this cluster. The first
step in thePUSH x-schema execution involves locating the object to be pushed using theLOCATE-OBJECT

x-schema (invoked by theLO focal-cluster). The successful completion ofLOCATE-OBJECTis followed by
the activation of theESTIMATE-MASS x-schema (invoked by theEM focal-cluster) for estimating the mass
of the object to be pushed. At the end of this step, the agent is ready to carry out the requisite motor action.
This would be indicated by the activation of theREADY focal-cluster. The next stage of execution consists
of two concurrent steps, reaching for the object and preshaping the hand in a manner appropriate for pushing
it. Reaching is realized by theREACH x-schema and preshaping is realized by an unspecified component
which eventually invokes theSHAPE-HAND x-schema for generating the appropriate motor commands. Once
the hand is properly shapedand correctly located to apply the force, the appropriate motor commands for
applying force are executed.

Observe that the x-schema brings together a number of distinct sensorimotor and cognitive functionalities
that would typically be distributed across a large network. The interaction between these components is
controlled and coordinated by the systematically wired network of focal-clusters.

Recurrent connections are a central aspect of x-schemas. In particular, a focal-cluster that initiates a
x-schema also receives a signal when the x-schema is completed.

3.1 Focal-Clusters

An x-schema includes a focal-cluster for each “unit of activity” comprising the x-schema. Here a unit of
activity may be:

� A component sub-schema (e.g., the x-schemaLOCATE-OBJECT).

� Coordination between two or more components of the x-schema (e.g., theREADY focal-clusters.

� A decision based on comparison (<;>;=; etc.) of two scalar quantities. The scalar quantities could
be parameter values or attribute values of entities extracted from memory.
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� A decision based on equality or inequality of two role fillers.

� Posing of a relational query to other conceptual structures (e.g., to otherSHRUTI networks encoding
causal models, semantic knowledge, and episodic memory).

Each focal-cluster consists of a small number (possibly zero) of parameter nodes (depicted as filled cir-
cles), a small number (possibly zero) of role nodes (depicted as open circles), three control nodes depicted as
?, +, and – (see Fig. 4). The functional significance of nodes in a focal-cluster is as follows:

The activation level of aparameternode at the time of x-schema activation specifies the value of the
associated parameter during the execution of the x-schema.6 For example, in thePUSHx-schema, the activa-
tion level of the parameter node indicates the relative force to be applied during the push action. In general,
parameter nodes can also encode discrete parameter values. In this case, the suprathreshold firing of such a
parameter node would lead to the action being performed with the parameter set to the value encoded by the
node.

Rolenodes provide a mechanism for dynamically binding an x-schema role with a filler at the time of
x-schema activation. ThePUSHx-schema has one role for indicating the intended object of the push action.
The dynamic binding between a role and its filler is expressed by the synchronous firing of the role node and
the collector node of the entity filling the role. Note that the process of encoding and propagating dynamic
bindings in an x-schema is the same as the one underlying reflexive reasoning.

The ?, +, and – nodes serve the control and coordination function. The ? node of a focal-cluster triggers
the activity associated with the focal-cluster and may be viewed as an “initiate activity” node. The threshold
of a ? node determines the number of active inputs it must receive in order to fire and trigger the associated
unit of activity. Consequently, a ? node can enforce coordination constraints. As an example, consider the ?
node of theAF focal-cluster. This node receives inputs from the + nodes of theSH andRO focal-clusters and
has a threshold of 2. Hence this node will fire if and only if both theREACH x-schema and the preshaping
component execute successfully (i.e., if the + nodes of both theSH and RO focal-clusters become active).
Note that a simple sequential flow of control can be realized by simply concatenating focal-clusters in a chain
and setting the threshold of ? nodes to 1.

The + and – nodes of a focal-cluster indicate the outcome of the activity associated with the focal-cluster.
If the focal-cluster is associated with an x-schema, the activation of the + node by the x-schema indicates
a successfulcompletionof the x-schema. On the other hand, the activation of the – node by the x-schema
indicates an unsuccessful completion. If the focal-cluster is associated with a comparison operation, the
activation of + and – nodes encode the possible outcomes of the comparison operation, respectively. Similarly,
for an equality operation.

Each x-schema has a head focal-cluster –ENABLE – that serves as the point of initiation. TheENABLE

focal-cluster of a shared x-schema has aswitchwhich controls the flow of signals into the x-schema. All
x-schemas that invoke this x-schema reactively have their appropriate focal-clusters connected to this switch
(see bottom of Fig. 4). It is assumed that these inter-schema connections are learned if two x-schemas are part
of an automatic behavior or a reactive plan. The switch behaves like a bidirectionalk to 1 switch, wherek is
the number of external x-schemas that are linked to this one. It ensures that at any given time, signals from
at most one x-schema can propagate into theENABLE focal-cluster of the (invoked) x-schema. This state is
maintained until the invoked x-schema finishes execution (this is signaled by the activation of the + or – node
in ENABLE). If several x-schemas try to activate a x-schema simultaneously, the switching mechanism selects
signals from one of these x-schemas. The switch also channels the output of the + and – nodes inENABLE to
the appropriate links feeding back to the invoking x-schema. A connectionist realization of such a switch is
described in [MS83].

6A parameter node is of the typescalar. Scalar nodes have a linear input-output function, that is, their output is simply proportional
to their input. As with other types of nodes, a scalar node is an abstraction of a small ensemble of cells. The activation level of a scalar
node corresponds to the (average) firing frequency of the cells within the node’s ensemble.
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3.2 X-Schema Execution

Let us walk through thePUSHx-schema (refer to Fig. 4). Imagine that our agent has the goal of vigorously
pushing a red wagon. As a result, one of the x-schemas connected to thePUSHx-schema invokes it by:

� Activating the ? node in itsENABLE focal-cluster.

� Activating the parameter node inENABLE with a high activation level (to indicate a high force value).

� Synchronizing the firing of the role node inENABLE with the appropriate role node of the invoking
x-schema. Since the object of the action is the “red wagon”, the latter would be firing in synchrony
with the focal nodes of the concepts “red” and “wagon”.

As a result of the above activation, thePUSH x-schema is enabled with its force parameter set to high
and its object role bound to the description “red wagon”. The activity inENABLE leads to the activation
of the focal-clusterLO wherein the ? node becomes active and the roler1 synchronizes with the role in
ENABLE. Consequently, the roler1 starts firing in synchrony with “red wagon” and hence, gets bound to
that description.LO in turn invokes theLOCATE-OBJECT x-schema with the binding “red wagon”. Upon
successful execution,LOCATE-OBJECT activates the + node inLO and binds the roler2 with the location
where the object matching the description “red wagon” is located. This binding is expressed by the role node
firing in synchrony with the appropriate “location” node in an egocentric spatial map. The activation of the +
node inLO leads to the activation of the focal-clusterEM with its role bound to the location of the red wagon.
EM activates theESTIMATE-MASS x-schema which estimates the mass of the red wagon. Upon completion,
ESTIMATE-MASS activates the + node ofEM and activates the parameter node ofEM at a level indicative of
the mass of the red wagon.

The activation of the + and the parameter nodes inEM leads to the activation of the ? node in theREADY

focal-cluster and the setting of the parameter indicative of the estimated mass of the object to be pushed (the
red wagon). By this time, the activity of the second parameter ofREADY is also set by the parameter node
in ENABLE to indicate the desired relative force, and the role ofREADY is bound to the location of the red
wagon by the roler2 in theLO focal-cluster.

The activation ofREADY marks a significant state in the execution of thePUSH. At this point the agent
has carried out the necessary preparatory steps but has not executed any actions that affect the environment.
ThusREADY provides a locus for high-level executive processes to exercise inhibitory control over the actual
execution of thePUSH.

READY activates the focal-clustersRO andSH concurrently, and binds their roles to the location of the
red wagon. This leads to the concurrent activation of (i) theREACH x-schema which brings the agent’s hand
to the location of the red wagon and (ii) the preshaping component which preshapes the hand in a manner
appropriate for pushing the red wagon. The preshaping component is specific to thePUSHx-schema. Given
a binding specifying the location of an object, it extracts the shape of the object and determines what should
be the appropriate shape of the hand for pushing the object. It conveys this preshaping information to the
generic x-schemaSHAPE-HAND as a set of parameter values.SHAPE-HAND now executes and generates the
necessary signals for driving the motor system.

REACH and the preshaping components execute independently and signal their completion (or failure) by
activating the + (–) node inRO andSH respectively. The successful termination of these two components
leads to the activation of theAF focal-cluster. Since the ? node ofAF has a threshold of 2, it becomes active
only upon receiving a completion signal from bothSH andRO. By this timeAF also has its parameters set
with the appropriate values of estimated mass and desired relative force, and its role bound to the location of
the red wagon. Now the final component for applying force is initiated which activates the low-levelAPPLY-
FORCEx-schema which issues motor commands for applying the force required to push the red wagon. Once
this component executes successfully it activates the + node ofAF which activates the + node ofENABLE and
signals the successful completion ofPUSH. The activity of the + node inENABLE is in turn propagated via
the switch to the + node of the appropriate focal-cluster in the x-schema that invokedPUSH.
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In addition to successful completion, failure is also communicated within the x-schema. For example, the
failure to locate the object, reach the object, or apply force to the object can lead to the activation of the –
nodes inLO, RO, andAF, respectively. This would lead to the activation of the – node inENABLE and signal
a failure ofPUSH. The activity of the – node inENABLE would be propagated via the switch to the – node
of the appropriate focal-cluster in the x-schema that invokedPUSH. Alternately, the failure of a step within
thePUSHx-schema can trigger alternate plans or remedial strategies. For example, the failure ofREACH may
trigger x-schemas for walking around an obstacle or using an implement to extend the agent’s reach.

Upon completion, an x-schema can also trigger a memory update. Thus the completion ofPUSHcan lead
to the agent’s episodic memory recording the fact the agent has pushed the red wagon. It can also lead to the
remembering of the position of the red wagon at the end ofPUSH. Here memory retrieval is treated as being
similar to a perceptual “look up”. Similarly, the updating of episodic or working memory is treated as being
similar to an external motor action.

Recently, Shastri has shown that a connectionist network architecture fully compatible withSHRUTI and
the encoding of x-schemas presented here, can transform a transient pattern of activity into a persistent
memory via long-term potentiation [Sha97, Sha99c, Sha99b].

3.3 Iteration and Interrupts

Figure 5 depicts a x-schema for clearing a specified object by removing things lying on its top. This example
illustrates how x-schemas can encode iteration and use perceptual processes and the state of the external
world to obviate the need for storing explicit state information.

The CLEAR x-schema is invoked by activating the ? node in theENABLE focal-cluster and binding its
role to the location of the object to be cleared. This in turn activates theVC focal-cluster which activates
the IS-IT-CLEAR x-schema for verifying whether the specified object is clear. IfIS-IT-CLEAR finds that the
object is not clear, it activates the – node inVC. This activates theFT focal-cluster, and in turn, theFIND-TOP

x-schema with its roler1 bound to the object to be cleared.FIND-TOP finds the location of the topmost item
above the object bound tor1 and communicates this location toFT by binding its roler2 to this location and
activating its + node.FT now activates the focal-clusterPA and binds its role to the location of the topmost
object.PA in turn activates thePUTAWAY x-schema with its role bound to the location of the topmost object.
PUTAWAY puts away the topmost object and activates the + node inPA, which in turn activates the ? node
in ENABLE (PA does not change the binding of the role in theENABLE focal-cluster). This completes one
iteration of a loop and starts a second iteration. In each iteration,FIND-TOP locates the topmost object and
PUTAWAY puts it away. The cycle continues untilIS-IT-CLEAR succeeds and activates the + node inVC which
activates the + node inENABLE thereby terminating the x-schema.

Notice that the x-schema does not require explicit control variables — the external world and the agent’s
perceptual mechanisms for locating objects in space provide the x-schema with the requisite information (cf.
[BHPR97]). Now imagine that the execution of this x-schema was interrupted and resumed subsequently.
At this time the only critical requirement is that the invoking x-schema bind the object role ofCLEAR to the
same object that was initially intended to be cleared. The state of the world itself captures the relevant state
information.

3.4 Interaction Between X-Schemas andSHRUTI

The encoding of x-schemas is fully integrated with theSHRUTI system for reflexive reasoning. Thus a focal-
cluster within an x-schema can pose a query about any relation encoded inSHRUTI. Upon receiving activation
from the focal-cluster, circuits inSHRUTI rapidly carry out the necessary retrieval and inference and return the
answer back to the focal-cluster that initiated the query. The answer takes the form of appropriate collector
(+ or –) activation and the binding of roles via synchronous activation. Similarly, a focal-cluster within an
x-schema can assert a dynamic fact pertaining to a relation inSHRUTI. Thus an x-schema can not only direct
external actions, it can also access and update other forms of conceptual knowledge including the agent’s
causal model of the environment and semantic and episodic facts.
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3.5 Implementation

The connectionist encoding of x-schemas as described above has been fully implemented within theSHRUTI

simulation system, and the implementation has been tested on a number of examples including thePUSHand
CLEAR x-schemas shown in Figs. 4 and 5. Figure 6 shows the timing of the internal focal-clusters of the
PUSHx-schema resulting from the activation of the x-schema.

The following illustrates how thePUSH x-schema is specified to the simulation system usingSHRUTI’s
input language.

*S:push(x;f) (y;m) <1> {
/* x is a role, f is a parameter, ‘;’ is a separator.

y is a local role, m is a local parameter */

/* first specify focal-clusters, their arguments, and their
associated x-schemas

note: all x-schemas have a head focal-cluster ENABLED
which is implicitly defined for all x-schemas. It is
referred to by the x-schema name. */

(lo: locateObject(x,y;) ), /* This defines a focal-cluster
labeled ‘‘lo’’. The unit of
activity associated with
this cluster is the x-schema
labeled locateObject. */

(em: estimateMass(y;m) ),
(ready: (y;f,m)),
(sh: preshapeHand(y;) ),
(ro: reachObj(y;) ),
(af: applyForce(y;f,m) ),

/* next describe the internal connectivity of focal-clusters
->| signifies an OR, the target node has a threshold of 1
->& signifies an AND, the target node has a threshold

equal to the number of incident links. */

?:push ->| ?:lo,
-:lo ->| -:push,
+:lo ->| +:em,
+:em ->| ?:ready,
?:ready ->| ?:sh,
?:ready ->| ?:ro,
+:sh ->& ?:af,
+:ro ->& ?:af,
-:ro ->| -:push,
-:af ->| -:push,
+:af ->| +:push

};

/* now define the sub-schemas of the push x-schema */

*S:locateObject(x,y;) <1> {
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...
};

...
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Figure 6: A schematized activity trace of selected nodes in thePUSH x-schema, generated from an actual
simulation. The horizontal axis counts full cycles in the periodic activity, which consist of four distinct
phases. The role node, shown at the bottom of the figure, fires in one phase in every cycle. Immediately
above that are plotted the activity of the ?:ENABLE and the +:ENABLE nodes (these labels refer to the ? and
the + nodes oftheENABLE focal-cluster, respectively). Above that, in order, are the ? and + nodes for the
focal-clustersLO, EM, READY, SH, RO, andAF. For purposes of the example, all external x-schemas are
encoded as “dummy” x-schemas that return positive results when activated.

4 X-Schemas and their Relation to Language

The embodiment of concepts and language is a central issue in cognitive science. How can a neural system
represent and learn concepts, and organize them into a set of lexical items? The Neural Theory of Language
(NTL) group7 in Berkeley has sought computational insight into these questions by asking them of structured

7Seehttp:://www.icsi.berkeley.edu/NTL/
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connectionist systems, rather than the physical neural systems of the brain [FLB+96].
One major shortcoming of the standard view of lexical acquisition is that it provides no account of how

a child learns tomake useof the concepts she learns and the words that label them. This same weakness
appears as a technical consequence of using back-propagation in PDP models: even when the network learns
perfectly how to classify a domain, it has no mechanism for executing the action.

As pointed out in Sect. 2, a crucial insight resulting from the NTL project [BFNL97, Nar97a] is that the
meaning of motion and manipulation words (such aspull, push, walk, run, stumbleandfall) are grounded
in x-schemas for carrying out the action. Different action verbs and associated grammatical devices (e.g.,
adverbs and prepositions) express parameters of the underlying action such asrates, manner, forces, and
posture and movement control parameters, as well as associated intentional and motivational states such as
goals, resources, energyandeffort. This parameter specification interface between language and action is
called thelinking structure.

The tight link hypothesized between language and action allows us to employ language learning algo-
rithms that produce usable representations of actions. [BFNL97] describes a project that resulted in a system
that after training on examples of action-word pairs, is able to produce an appropriate label for a particular
motor action based on features of both the action and the world state. In addition, however, the learned verb
representation also functions as a command interface that allows the system to execute a given verb by filling
in the linking structure. The system was able to learn hand action verbs in a variety of languages suggesting
that x-schemas may provide a sufficiently strong inductive bias for verb learning.

The grounding of lexical semantics in action controllers enables the representation to flexible and adaptive
in the way context affects interpretation. Two recent projects resulted in systems that exploit this context-
sensitivity for language understanding. One project [Nar97b] used recurring monitoring and control schemas
abstracted from the basic representation to provide a fine-grained simulation-based framework of processes
and their interactions. The resulting model seems to offer a natural solution to the vexing linguistic prob-
lem of ”aspectual composition”. [Nar97a] describes a second project that uses an x-schema based language
understanding system that models metaphoric reasoning about event descriptions in abstract domains such
as international economics. A crucial aspect of the implemented model is its capacity to exploit domain
knowledge of spatial motion and manipulation (implemented as x-schema simulations) for real-time simula-
tive inference. Results of applying our model to discourse fragments from newspaper stories in international
economics show that crucial facts about abstract plans, goals, resources and intent can be expressed by pro-
jections from embodied concepts. Our model can make these discourse inferences in real-time, consistent
with the fact that such information is routinely available as automatic inferences in narrative understanding.

5 Conclusions

We have described a connectionist encoding of x-schemas and reactive plans that can model high-level
sensory-motor processes and can be a candidate for representing reactive behaviors. It is interesting that
the same mechanisms seem sufficient for reflexive inference as well as motor x-schemas. This is not surpris-
ing if one takes seriously the notion that language and conceptual structures are grounded in our body and
shaped by our motor and perceptual systems.

A number of issues remain open. One key issue is that of learning. How are networks structures for
x-schemas learned? Our group is investigating this question within the framework of model-merging [FB98]
and recruitment learning [Fel82, Sha99b]. A second key issue concerns time. Different x-schemas operate
over different time scales and even components of the same x-schema may have widely different comple-
tion times. This poses a potential problem for a connectionist encoding: the resulting state of a component
that terminates early must be maintained while other components are executing. This can be done either
by keeping the appropriate nodes active, or by converting the state information into a structural represen-
tation (i.e., memorizing it) and later retrieving it upon the completion of other components. The former
solution is appropriate if the gap in completion times are small, while the latter is more suited for larger
gaps. Both these solutions require further investigation. Other issues relating to time such as suspension,
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preemption/interruption, retraction, and time-out, also require additional work and are under investigation.
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