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EECS 182 Deep Neural Networks
Fall 2023 Anant Sahai Homework 6
This homework is due on October 7, at 10:59PM.

1. Debugging DNNs
(a) Your friends want to train a classifier for a new app they’re designing. They implement a deep con-

volutional network and train models with two configurations: a 20 layer model and a 56 layer model.
However, they observe the following training curves and are surprised that the 20-layer network has
better training as well as test error.

Figure 1: Training deep networks on CIFAR10

What are the potential reasons for this observation? Are there changes to the architecture design
that could help mitigate the problem?

(b) You and your teammate want to compare batch normalization and layer normalization for the ImageNet
classification problem. You use ResNet-152 as a neural network architecture. The images have input
dimension 3 × 224 × 224 (channels, height, width). You want to use a batch size of 1024; however,
the GPU memory is so small that you cannot load the model and all 1024 samples at once — you can
only fit 32. Your teammate proposes using a gradient-accumulation algorithm:

Gradient accumulation refers to running the forward and backward pass of a model a fixed
number of steps (accumulation_steps) without updating the model parameters, while
aggregating the gradients. Instead, the model parameters are updated every (accumulation_steps).
This allows us to increase the effective batch size by a factor of accumulation_steps.

You implement the algorithm in PyTorch as:

model.train()
optimizer.zero_grad()
for i, (inputs, labels) in enumerate(training_set):

predictions = model(inputs)
loss = loss_function(predictions, labels)
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loss = loss / accumulation_steps
loss.backward()
if (i+1) % accumulation_steps == 0:

optimizer.step()
optimizer.zero_grad()

Note that the .backward() operator in PyTorch implicitly keeps accumulating the gradient for all
the parameters, unless zero’d out with an optimizer.zero_grad() call.
Before running actual experiments, your friend suggests that you should test whether the gradient
accumulation algorithm is implemented correctly. To do so, you collect the output logits (i.e. the
outputs of the last layer) from two models — ResNet-152, one with batchnorm and the other with
layernorm — using different combinations of batch sizes and the number of accumulation steps that
keep the effective batch size to 32.[
Note that the effective batch size is product of the batch size and accumulation_steps. In other

words, the possible combinations for effective batch-size 32 are:
(batch_size, accumulation_steps) = (1, 32), (2, 16), (4, 8), (8, 4), (16, 2), (32, 1).

]
Here, the (32,1) combination is the baseline approach without the “gradient accumulation” trick, and
we want to see whether the others output exactly the same logits (up to floating point inaccuracies) as
the baseline.
On running these tests, you observe that one of models (either with batchnorm or with layernorm),
doesn’t pass the test. Which one is it, and why?

(c) You are training a CIFAR model and observe that the model is diverging (instead of the training loss
decreasing over iterations). Debug the pseudocode and give a correction that you believe would
actually result in reasonable convergence during training.
(Note: You can assume that the datasets are loaded correctly, model is trained with SGD optimizer
with learning rate= 0.001, batchsize= 100)
(HINT: Ideas from the previous part of this question might be relevant.)

Figure 2: Training loss for CIFAR10

model . t r a i n ( )
o p t i m i z e r . z e r o _ g r a d ( )
f o r ( i n p u t s , l a b e l s ) in t r a i n i n g _ s e t :

p r e d i c t i o n s = model ( i n p u t s )
l o s s = l o s s _ f n ( p r e d i c t i o n s , l a b e l s )
l o s s . backward ( )
o p t i m i z e r . s t e p ( )

2. Tensor Rematerialization
You want to train a neural network on a new chip designed at UC Berkeley. Your model is a 10 layer network,
where each layer has the same fixed input and output size of s. The chip your model will be trained on is
heavily specialized for model evaluation. It can run forward passes through a layer very fast. However, it is
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severely memory constrained, and can only fit in memory the following items (slightly more than twice of
the data necessary for performing a forward pass):

(a) the inputs;

(b) 2s activations in memory;

(c) optimizer states necessary for performing the forward pass through the current layer.

To train despite this memory limitation, your friend suggests using a training method called tensor rema-
terialization. She proposes using SGD with a batch size of 1, and only storing the activations of every 5th
layer during an initial forward pass to evaluate the model. During backpropagation, she suggests recom-
puting activations on-the-fly for each layer by loading the relevant last stored activation from memory, and
rerunning forward through layers up till the current layer.

Figure 3 illustrates this approach. Activations for Layer 5 and Layer 10 are stored in memory from an
initial forward pass through all the layers. Consider when weights in layer 7 are to be updated during
backpropagation. To get the activations for layer 7, we would load the activations of layer 5 from memory,
and then run them through layer 6 and layer 7 to get the activations for layer 7. These activations can then
be used (together with the gradients from upstream) to compute the gradients to update the parameters of
Layer 7, as well as get ready to next deal with layer 6.

Figure 3: Tensor rematerialization in action - Layer 5 and Layer 10 activations are stored in memory along with the
inputs. Activations for other layers are recomputed on-demand from stored activations and inputs.

(a) Assume a forward pass of a single layer is called a fwd operation. How many fwd operations
are invoked when running a single backward pass through the entire network? Do not count
the initial forward passes required to compute the loss, and don’t worry about any extra computation
beyond activations to actually backprop gradients.

(b) Assume that each memory access to fetch activations or inputs is called a loadmem operation. How
many loadmem operations are invoked when running a single backward pass?

(c) Say you have access to a local disk which offers practically infinite storage for activations and a
loaddisk operation for loading activations. You decide to not use tensor rematerialization and
instead store all activations on this disk, loading each activation when required. Assuming each fwd
operation takes 20ns and each loadmem operation (which loads from memory, not local disk) takes
10ns for tensor rematerialization, how fast (in ns) should each loaddisk operation be to take the
same time for one backward pass as tensor rematerialization? Assume activations are directly
loaded to the processor registers from disk (i.e., they do not have to go to memory first), only one
operation can be run at a time, ignore any caching and assume latency of any other related operations
is negligible.

3. Graph Dynamics
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Some graph neural network methods operate on the full adjacency matrix. Others, such as those discussed
here https://distill.pub/2021/gnn-intro/, at each layer apply the same local operation to
each node based on inputs from its neighbors.

This problem is designed to:

• Show connections between these methods.

• Show that for a positive integer k, the matrix Ak has an interesting interpretation. That is, the entry in
row i and column j gives the number of walks of length k (i.e., a collection of k edges) leading from
vertex i to vertex j.

To do this, let’s consider a very simple deep linear network, defined as follows:

• Its underlying graph has n vertices, with adjacency matrix A. That is, Ai,j = 1 if vertices i and j are
connected in the graph and 0 otherwise.

• It has n vertices in each layer, corresponding to the n vertices of the underlying graph.

• Each vertex has n channels.

• The input to each node in the 0-th layer is a one-hot encoding of own identity. That is, the node i in
the graph has input (0, · · · , 0, 1︸︷︷︸

i-th entry

, 0, · · · , 0).

• The weight connecting node i in layer k to node j in layer k + 1 is Ai,j .

• At each layer, the operation at each node is simply to sum up the weighted sum of its inputs and
to output the resulting n-dim vector to the next layer. You can think of these as being depth-wise
operations if you’d like.

(a) Write the output of the j-th node at layer k in this network in terms of the matrix A.
(Hint: This output is an n-dimensional vector since there are n output channels at each layer.)

(b) Recall that a path from i to j in a graph is a sequence of vertices that starts with i, ends with j, and
every successive vertex in the sequence is connected by an edge in the graph. The length of a path is
the number of edges in it.
Here is some helpful notation:

• V (i) is the set of vertices that are connected to vertex i in the graph.
• Lk(i, j) is the number of distinct paths that go from vertex i to vertex j in the graph where the

number of edges traversed in the path is exactly k.
• By convention, there is exactly 1 path of length 0 that starts at each node and ends up at itself.

That is, L0(i, j) = 1i=j .

Prove that the i-th output of node j at layer k in the network above is the count of how many
paths there are from i to j of length k.
(Hint: Induct on k.)

(c) The GNN we have worked on so far is essentially linear, since the operations performed at each layer
are permutation-invariant locally at each node, and can be viewed as essentially doing the exact same
thing at each vertex in the graph based on inputs coming from its neighbors. This is called "aggrega-
tion" in the language of graph neural nets.
If we represent the graph as a matrix, with the activatios of the i-th node in the i-th row, what is the
update function?
In the case of the computations in previous parts, what is the update function that takes the aggre-
gated inputs from neighbors and results in the output for this node?
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(d) The simple GNN described in the previous parts counts paths in the graph. If we were to replace sum
aggregation with max aggregation, what is the interpretation of the outputs of node j at layer k?

4. Graph Neural Networks (Optional)
For an undirected graph with no labels on edges, the function that we compute at each layer of a Graph
Neural Network must respect certain properties so that the same function (with weight-sharing) can be used
at different nodes in the graph. Let’s focus on a single particular “layer” ℓ. For a given node i in the graph,
let sℓ−1

i be the self-message (i.e. the state computed at the previous layer for this node) for this node from
the preceeding layer, while the preceeding layer messages from the ni neighbors of node i are denoted by
mℓ−1

i,j where j ranges from 1 to ni. We will use w with subscripts and superscripts to denote learnable scalar
weights. If there’s no superscript, the weights are shared across layers. Assume that all dimensions work
out.

(a) Tell which of these are valid functions for this node’s computation of the next self-message sℓi .
For any choices that are not valid, briefly point out why.
Note: we are not asking you to judge whether these are useful or will have well behaved gradients.
Validity means that they respect the invariances and equivariances that we need to be able to deploy as
a GNN on an undirected graph.

(i) sℓi = w1s
ℓ−1
i + w2

1
ni

∑ni
j=1m

ℓ−1
i,j

(ii) sℓi = max(wℓ
1s

ℓ−1
i , w2m

ℓ−1
i,1 , w3m

ℓ−1
i,2 , . . . , wni−1m

ℓ−1
i,ni

) where the max acts component-wise on
the vectors.

(iii) sℓi = max(wℓ
1s

ℓ−1
i , w2m

ℓ−1
i,1 , w2m

ℓ−1
i,2 , . . . , w2m

ℓ−1
i,ni

) where the max acts component-wise on the
vectors.

(b) We are given the following simple graph on which we want to train a GNN. The goal is binary node
classification (i.e. classifying the nodes as belonging to type 1 or 0) and we want to hold back nodes 1
and 4 to evaluate performance at the end while using the rest for training. We decide that the surrogate
loss to be used for training is the average binary cross-entropy loss.

Figure 4: Simple Undirected Graph

nodes 1 2 3 4 5
yi 0 1 1 1 0
ŷi a b c d e

Table 1: yi is the ground truth label, while ŷi is the predicted probability of node i belonging to class 1 after training.

Table 1 gives you relevant information about the situation.
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Compute the training loss at the end of training.
Remember that with n training points, the formula for average binary cross-entropy loss is

1

n

∑
x

(
y(x) log

1

ŷ(x)
+ (1− y(x)) log

(
1

1− ŷ(x)

))
where the x in the sum ranges over the training points and ŷ(x) is the network’s predicted probability
that the label for point x is 1.

(c) Suppose we decide to use the following update rule for the internal state of the nodes at layer ℓ.

sℓi = sℓ−1
i +W1

∑ni
j=1 tanh

(
W2m

ℓ−1
i,j

)
ni

(1)

where the tanh nonlinearity acts element-wise.
For a given node i in the graph, let sℓ−1

i be the self-message for this node from the preceeding layer,
while the preceeding layer messages from the ni neighbors of node i are denoted by mℓ−1

i,j where j
ranges from 1 to ni. We will use W with subscripts and superscripts to denote learnable weights in
matrix form. If there’s no superscript, the weights are shared across layers.

(i) Which of the following design patterns does this update rule have?
□ Residual connection
□ Batch normalization

(ii) If the dimension of the state s is d-dimensional and W2 has k rows, what are the dimensions
of the matrix W1?

(iii) If we choose to use the state sℓ−1
i itself as the message mℓ−1 going to all of node i’s neighbors,

please write out the update rules corresponding to (1) giving sℓi for the graph in Figure 4 for
nodes i = 2 and i = 3 in terms of information from earlier layers. Expand out all sums.

5. Learning from Point Clouds (Optional)
A point cloud is a discrete set of data points in space. Because of this set-valued nature of point clouds,
concepts from graph neural nets are often relevant in their processing.

In Fig.5, we consider a simple network to process a 2d point cloud X = {xi}ni=1 ∈ Rn×2, where n is the
number of points. The original features of each point are its horizontal and vertical coordinates.

Input point cloud

𝑋(
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𝑛×
𝑓)

ReLU then 
average pool

𝐹(𝑓) 𝑌+(𝑘)

Point feature learning Global feature 𝐹 Output 
score 𝑌#

shareddi
m
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Figure 5: 2d point cloud processing network.

For example, an input point cloud with ground-truth of digit 1 could be represented as


0 4
0 3
0 2
0 1

 where each
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row is a different point in the point cloud.

(a) The point feature learning module in Figure 5 learns f -dimensional features for each point separately.
Specifically, it learns (shared) weights W1 ∈ R2×f to get hidden layer outputs Z = XW1. We
then apply the nonlinear activation function element-wise and then use average pooling to yield the
f -dimensional global feature vector F ∈ Rf .
Suppose we swap the first two points of the input point cloud X , i.e. {x1, x2, ..., xn} to {x2, x1, ..., xn}.
Show that the global feature F will not change.
Note: In reality, the network here is permutation invariant, as changing the ordering of the n input
points in X will not affect the global feature F .

(b) One drawback of the point feature learning discussed in part (a) is that the spatial inter-relationships
of different points is not considered.
One idea is to use the Euclidean distance as a similarity measure to group points together into local
neighborhoods, and to then process each point together with contextual information about that neigh-
borhood. Your friend proposed several different point grouping methods listed below.
Select all methods that guarantee permutation-invariance, i.e. the global feature vector F will
not change with different orderings of the points. Please use ■ for your selections.

□ For each point xi of the point cloud X , we find the top-m nearest neighbor points. We then
augment each point coordinates with its nearest neighbors’ coordinates to make X̃ ∈ Rn×2(m+1).
The order of a concatenated group of points would be: the center point, 1st closest, 2nd closest
point, ..., mth closest point. Now Z = X̃W̃1 where W̃1 ∈ R2(m+1)×f are the shared learnable
weights.

□ For each point xi of the point cloud X , we find the top-m nearest neighbor points. As in the pre-
vious choice, we then augment each point coordinates with its nearest neighbors’ coordinates and
get X̃ ∈ Rn×2(m+1). The difference from the previous choice is that the order of a concatenated
group of nearby points simply follows their order in the original X . The W̃1 is the same as the
previous choice.

□ For each point xi of the point cloud X , we instead find all neighboring points with the distance to
xi smaller than a predefined radius r. We then augment each point coordinates with its neighbors’
coordinates with the order being the center point, the 1st closet point within r, the 2nd closet point
within r, ..., the furthest point within r. Because different points might have a different number of
neighbors within radius r, the shared learnable weights W̃1 ∈ R2(n+1)×f are applied by using the
relevant-size truncation of W̃1 for every point.

□ For each point xi of the point cloud X , as in the previous option, we find all neighboring points
with the distance to xi smaller than a predefined radius r. But instead of concatenating the rep-
resentation of the point with its neighboring points, we instead extend the point’s representation
with just the distance d from xi to the furthest point within the radius r resulting in an X̃ ∈ Rn×3.
The W̃1 ∈ R3×f .

(c) Point downsampling (reducing the number of points for deeper layers to process). Let’s consider a
deeper network, as shown in Fig.6. We are adding a pooling layer (highlighted in bold text) after the
first point feature learning layer to downsample half of the points in the cloud (Z → Z1), followed
by another point feature learning layer to increase the dimension of the point features from f to 2f
(Z1 → Z2). (Note that this mimics pooling procedures in CNNs: the spatial size shrinks, followed by
an increase of the feature dimensionality.)
Consider two candidate algorithms. Both start with the point cloud comprising n points and both
iteratively select points until you have at least n

2 samples. For both, we construct two sets: sampled
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Input point cloud
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Figure 6: A deeper point cloud processing network.

and remaining to denote the set of sampled and remaining points. For both, we first pick a random
point and use it to initialize sampled and we initialize remaining with all the other points. Then, the
iterative processes are different for the two algorithms as described below.
Which algorithm is more similar in spirit to using standard max pooling for downsampling in
CNNs? Please use ■ for your selections.
□ Algorithm 1:

i. For each point in remaining find its nearest neighbor in sampled, saving the distance.
ii. Select the point in remaining whose nearest neighbor distance is the largest and move it from

remaining to sampled. (i.e. We keep points far from those we already have.)

□ Algorithm 2:
i. For each point in remaining find its nearest neighbor in sampled, saving the distance.

ii. Select the point in remaining whose nearest neighbor distance is the smallest and move it from
remaining to sampled. (i.e. We keep points close to those we already have.)

At the end, only the points in sampled get sent on to the next layer.

6. The power of the graph perspective in clustering (Coding)
Implement all the TODOs in the q_graph_clustering.ipynb. Answer the written questions below.

(a) We used the KMeans algorithm implementation of sklearn, and showed our attempt to cluster this
dataset into 3 classes. Comment on the output the KMeans algorithm. Did it work? If so, explain
why, if not, explain why not.

(b) adjacency_matrix = ?

(c) As given, the data points in our dataset are represented simply with their 2D Cartesian coordinates.
Let’s now interpret every single point as a node in a graph. Our goal is to find a way to relate every
node in the graph in such way that the points that are closer together and points that are far apart
maintain that relationship explicitly.
That is, we will choose to look at every point in the dataset as a vertex in a graph where the edge
connection between two vertexes is determined by the weighted distances between them.
In the notebook, implement a function that takes in the input dataset and some coefficient gamma and
returns the adjacency matrix A:

Ai,j = e−γ||xi−xj ||2 (2)

where xi and xj represent each point in the provided dataset, γ is positive. You may find the distance
module from scipy.spatial useful.
Is this a directed or an undirected graph?
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(d) The degree matrix of an undirected graph is a diagonal matrix which contains information about the
degree of each vertex. In other words, it contains the number of edges attached to each vertex and it is
given by:

Di,j =

{
deg(vi) if i = j,

0 otherwise.

where the degree deg(vi) of a vertex counts the number of times an edge terminates at that vertex.
Note that in the traditional definition of the adjacency matrix, this boils down to the diagonal matrix in
which element along the diagonals are column-wise sum of the adjacency matrix.
Using the same idea, write a function that takes in the adjacency matrix as an argument and
returns the degree matrix.

(e) Using γ = 7.5, compute the adjacency matrix A, degree matrix D and the symmetrically normal-
ized adjacency matrix matrix M ,

M = ASymNorm = D−1/2AD−1/2 (3)

Note that another interpretation of the matrix M is that it shows the probability of moving/jumping
from one node to another.

(f) Applying SVD decomposition on M , write a function that selects the top 3 vectors (corresponding
to the highest singular values) in the matrix U and performs the same KMeans clustering used
above on them. Show the plots. What do you observe? Did it work? If so, explain why, if not,
explain why not.
Intuition: By selecting the top 3 vectors of the U matrix, we are selecting a new representation of the
data points which could be seen as a construction of a low dimension embedding of the data points as
mentioned in problem 3.

(g) Now let’s think of the symmetrically normalized adjacency matrix obtained above as the transition
matrix in of a Markov Chain. That is, it represents the probability of jumping from one node to
another. In order to fully interpret M in such way, it needs to be a proper stochastic matrix which
means that the sum of the elements in each column must add up to 1. Write a function that takes in
the matrix M and returns Mstoch, the stochastic version of M; compute the stochastic matrix.
Using SVD decomposition on the newly obtained stochastic matrix Mstoch, use your function in part
(e) to select the top 3 vectors of the matrix Ustoch and perform the same KMeans clustering used
above on them and show the plots. What do you observe? Did it work?

(h) Now, let’s investigate how we could have made the matrix M work directly in our original interpreta-
tion. To do this, normalize those 3 vectors before performing the clustering.
Show the plots. What do you observe? Did it work? If so, explain why normalizing the vectors
gives what is expected.
Hint: you may use

from sklearn.preprocessing import normalize

7. Zachary’s Karate Club (Coding)
Zachary’s Karate Club (ZKC) is a social network of a university karate club, described in the paper "An
Information Flow Model for Conflict and Fission in Small Groups" by Wayne W. Zachary.

A social network captures 34 members of a karate club, documenting links between pairs of members who
interacted outside the club.
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Figure 7: Zachary’s Karate Club Graph

During the study a conflict arose between the officer/ administrator ("John A") and the instructor "Mr. Hi",
which led to the split of the club into two.

Half of the members formed a new club around Mr. Hi; members from the other part found a new instructor
or gave up karate.

Based on collected data Zachary correctly assigned all but one member of the club to the groups they ac-
tually joined after the split. You could read more about it here https://www.jstor.org/stable/
3629752, and here https://commons.wikimedia.org/wiki/File:Social_Network_Model_
of_Relationships_in_the_Karate_Club.png

We will train a GNN to cluster people in the karate club in such that people who are more likely to
associate with either the officer or Mr. Hi will be close together, while the distance beween the 2 classes will
be far.

In the original paper titled "Semi-Supervised Classification with Graph Convolutional Networks" that can
be found here https://arxiv.org/pdf/1609.02907.pdf, the authors framed this as a node-level
classification problem on a graph. We will pretend that we only know the affiliation labels for some of the
nodes (which we’ll call our training set) and we’ll predict the affiliation labels for the rest of the nodes (our
test set).

Implement all the TODOs in zkc.ipynb and include your notebook with your submission.

(a) Go through q_zkc.ipynb. We want our network to be aware of information about the nodes them-
selves instead of only the neighborhood, so we add self loops our adjacency matrix. The paper called
this Ã. Compute Ã to add self loops to your adjacency matrix.

(b) Write a function that takes in Ã as argument and returns the ÃSymNorm adjacency matrix.

(c) The other input to our GNN is the graph node matrix X which contains node features. For simplicity,
we set X to be the identity matrix because we don’t have any node features in this example. Generate
the feature input matrix X .

(d) We will now implement a single layer GNN. Implement the forward and backward pass functions
for GNN_Layer class. Details can be found in the notebook.

(e) Run the forward and backward passes and ensure the checks pass.
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(f) We are now ready to setup our classification network! Use the GNN and Softmax layers to setup the
network.

(g) Instantiate the GNN model with the correct input and output dimensions.
(h) With the model, data and optimizer ready, fill in the todos in the training loop function and train

your model. Plot the clustered data.
(i) Explain why we obtain 100% on accuracy on our test set, yet we see in the plot that 2 samples

seem to be misclassified.

8. Stochastic Gradient Descent (when it is possible to interpolate)
This is a problem about the convergence of SGD for least-squares problems when there is actually a solution
that achieves zero loss.

For simplicity, suppose that the problem we are given is

Xw = y (4)

where X =


x⊤
1

x⊤
2
...
x⊤
n

 is a wide matrix with xi being d-dimensional vectors and y =


y1
y2
...
yn

 is an n-dimensional

vector. Here, we assume that X has full row-rank (i.e. the xi are linearly independent) and so (4) indeed has
solutions. (Note that as d > n, there there would be infinitely many solutions.)

While we already know lots of ways of solving this problem, it is an illustrative toy example to make sure
we understand why SGD works in such settings. (This material was covered in lecture but you really do
need to understand it yourself so you can deal with variations you might encounter.) This problem has a
jupyter demo (demo link) attached to it at the end to help you play around with things to get an even deeper
set of intuitions.

In this problem, we will just initialize w0 = 0 for simplicity.

(a) Let’s do some preliminaries. First, we want to change coordinates to notationally simplify our analysis
of SGD.
Let w∗ be the min-norm solution to (4).
Write out what w∗ is explicitly with respect to X and y and then, change coordinates to w′ =
w −w∗ to write the new equations as:

Xw′ = 0 (5)

What is the new initial condition for w′
0?

(b) Next, let’s leverage SVD coordinates to further simplify the problem. Show that there exists an
orthonormal transformation V of variables w′′ = Vw′ so that (5) looks like

[X̃ 0n×(d−n)]w
′′ = 0 (6)

and furthermore, show that the initial condition for w′
0 you computed in the previous part, when

viewed as w′′
0 has all zeros in the final (d− n) positions.
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(c) Argue why what you have seen in the previous parts allows us to now focus on a square system
of equations:

X̃w̃ = 0 (7)

and furthermore show that each of the n constituent equations (corresponding to rows) of (7)
can be obtained by means of coordinate changes from the same indexed equation in (4).

(d) Let’s now engage with SGD itself. Here, we will just use a minibatch length of 1 and batch sampling
with replacement. This means that at every iteration of SGD, we roll a fair n-sided die and choose the
single equation in (4) that corresponds to the row that came up on the die. Let It be the iid uniform
random variable on {1, . . . , n} that we roll after iteration t.
At the t+ 1-th iteration, we compute

wt+1 = wt − η∇LIt(wt) (8)

where Li(w) = (y[i]− x⊤
i w)2 is the squared loss on the i-th equation and η is the step-size (learning

rate).
Show that an SGD step taken in (8) for the original optimization problem matches exactly to an
SGD step taken for w̃ for solving (7), and that in particular these steps look like:

w̃t+1 = w̃t − 2ηx̃It x̃
⊤
Itw̃t (9)

(e) At this point, we can focus entirely on the simplified square system (7) and the stochastic evolution of
the iterations described by (9).
To show convergence to zero, we need to pick a suitable stochastic Lyapunov function L(w̃) that is
bounded below by zero and will decrease in expectation at every time step. In particular, we want to
establish

E[L(w̃t+1)|w̃t] < (1− ρ)L(w̃t) (10)

with a 1 > ρ > 0 so that this Lyapunov function tends to decrease exponentially to zero. We will have
to have a suitably small step-size/learning-rate η for this to happen, of course.
Show that (10) indeed implies that for every ϵ > 0 and δ > 0, there exists a T > 0 for which

P (L(w̃T ) < ϵ) ≥ 1− δ. (11)

(f) One natural guess for a stochastic Lyapunov function is

L(w̃) = w̃⊤X̃⊤X̃w̃. (12)

Argue why the candidate Lyapunov function L(w̃) in (12) is non-negative and is only equal to
zero at w̃ = 0.

(g) Now, with a guessed stochastic Lyapunov function in hand, we can try to show (10). The first step will
be to decompose the evolution of L(w̃) into three parts:

L(w̃t+1) = L(w̃t) +A+B (13)

where the term A is linear in the actual stochastic update (w̃t+1 − w̃t) and the term B is quadratic in
that update.
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Expand out L(w̃t + (w̃t+1 − w̃t)) to give explicit forms for A and B.
(h) We are counting on the term A in (13) to give us actual contraction in expectation since this looks like

a gradient-descent step. Show:

E[A|w̃t] ≤ −c1ηL(w̃t) (14)

where the c1 > 0 is a positive constant that depends on the problem.
(Hint: you are going to want to leverage the actual updates in (9) as well as the singular value structure
for X̃ . Can the smallest singular value be zero?)

(i) We need to make sure that the “quadratic” term B in (13) cannot undo the progress made by A in
expectation. Show:

E[B|w̃t] ≤ c2η
2L(w̃t) (15)

where c2 > 0 is another positive constant that depends on the problem.
(Hint: you are going to want to leverage the actual updates in (9), the singular value structure for X̃ ,
and the fact that the rows of X̃ can only be so big. You will want to leverage the largest singular value
of X̃ for one bounding step and then let β be the largest norm of the rows of X̃ to do another bounding
step.)

(j) Finally, we can put the pieces together to see that

E[L(w̃t+1)|w̃t] ≤ (1− c1η + c2η
2)L(w̃t) (16)

where c1 > 0 and c2 > 0 as well. Show that this means that there exists a small enough η so that
1− c1η + c2η

2 < 1.
(k) In earlier problem set, you saw how you could reinterpret ridge-regression using feature-aumentation.

The earlier parts of this problem have now established that leveraging that trick, you can get SGD to
converge exponentially for ridge regression. Check out Jupyter notebook in this demo link, and report
what you observed in terms of the convergence rate.
One of the lessons that you will observe from the code is that the implementation details matter. If
you do ridge regression and just treat it as an optimization problem, you won’t just be able to use SGD
and get exponential convergence with a constant step size. (You would have to adjust the step sizes to
make them smaller, but this would slow down your convergence considerably.) But if you intelligently
use the feature-aumentation perspective on ridge regression, you’ll get exponential convergence.
This is why it is vital for people in EECS to really understand machine learning at the level of detail
that we are teaching you. Because in the real world, even if you are a practicing machine learning
engineer, if you are working on cutting-edge systems, you need to understand how to implement what
you want to do so that it works fast. Equivalent formulations mathematically need not be equivalent
from the point of view of implementation – this is one dramatic example of a case when they are not.
Take EE227C and beyond if you want to understand these things more deeply.

9. Homework Process and Study Group
Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
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(b) If you worked with someone on this homework, who did you work with?
List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework?

Contributors:

• Saagar Sanghavi.

• Suhong Moon.

• Kumar Krishna Agrawal.

• Romil Bhardwaj.

• Jerome Quenum.

• Olivia Watkins.

• Anant Sahai.

• Anrui Gu.

• Matthew Lacayo.

• Past EECS 282 and 227 Staff.

• Peter Wang.

• Long He.

• Yaodong Yu.
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