
Homework 5 @ 2023-09-23 14:04:54-07:00

EECS 182 Deep Neural Networks
Fall 2023 Anant Sahai Homework 5

1. Depthwise Separable Convolutions
Depthwise separable convolutions are a type of convolutional operation used in deep learning for image
processing tasks. Unlike traditional convolutional operations, which perform both spatial and channel-wise
convolutions simultaneously, depthwise separable convolutions decompose the convolution operation into
two separate operations: Depthwise convolution and Pointwise convolution.

This can be viewed as a low-rank approximation to a traditional convolution. For simplicity, throughout this
problem, we will ignore biases while counting learnable parameters.

(a) Suppose the input is a three-channel 224× 224-resolution image, the kernel size of the convolutional
layer is 3× 3, and the number of output channels is 4.

Figure 1: Traditional convolution.

What is the number of learnable parameters in the traditional convolution layer?
(b) Depthwise separable convolution consists of two parts: depthwise convolutions (Fig.2) followed by

pointwise convolutions (Fig.3). Suppose the input is still a three-channel 224× 224-resolution image.
The input first goes through depthwise convolutions, where the number of output channels is the same
as the number of input channels, and there is no “cross talk” between different channels. Then, this
intermediate output goes through pointwise convolutions, which is basically a traditional convolution
with the filter size being 1× 1. Assume that we have 4 output channels.
What is the total number of learnable parameters of the depthwise separable convolution layer
which consists of both depthwise and pointwise convolutions?

Homework 5, © UCB EECS 182, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Homework 5 @ 2023-09-23 14:04:54-07:00

Figure 2: Depthwise convolution. Figure 3: Pointwise convolution

2. Regularization and Dropout
Recall that linear regression optimizes the following learning objective:

L(w) = ||y −Xw||22 (1)

One way of using dropout during SGD on the d-dimensional input features xi involves keeping each feature
at random ∼i.i.d Bernoulli(p) (and zeroing it out if not kept) and then performing a traditional SGD step.

It turns out that such dropout makes our learning objective effectively become

L(w̌) = ER∼Bernoulli(p)

[
||y − (R⊙X)w̌||22

]
(2)

where ⊙ is the element-wise product and the random binary matrix R ∈ {0, 1}n×d is such that Ri,j ∼i.i.d

Bernoulli(p). We use w̌ to remind you that this is learned by dropout.

Recalling how Tikhonov-regularized (generalized ridge-regression) least-squares problems involve solving:

L(w) = ||y −Xw||22 + ||Γw||22 (3)

for some suitable matrix Γ.

(a) Show that we can manipulate (2) to eliminate the expectations and get:

L(w̌) = ||y − pXw̌||22 + p(1− p)||Γ̌w̌||22 (4)

with Γ̌ being a diagonal matrix whose j-th diagonal entry is the norm of the j-th column of the
training matrix X .

(b) How should we transform the w̌ we learn using (4) (i.e. with dropout) to get something that looks
a solution to the traditionally regularized problem (3)?
(Hint: This is related to how we adjust weights learned using dropout training for using them at
inference time. PyTorch by default does this adjustment during training itself, but here, we are doing
dropout slightly differently with no adjustments during training.)

(c) With the understanding that the Γ in (3) is an invertible matrix, change variables in (3) to make the
problem look like classical ridge regression:

L(w̃) = ||y − X̃w̃||22 + λ||w̃||22 (5)

Explicitly, what is the changed data matrix X̃ in terms of the original data matrix X and Γ?
(d) Continuing the previous part, with the further understanding that Γ is a diagonal invertible matrix with

the j-th diagonal entry proportional to the norm of the j-th column in X , what can you say about the

Homework 5, © UCB EECS 182, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 2

Homework 5 @ 2023-09-23 14:04:54-07:00

norms of the columns of the effective training matrix X̃ and speculate briefly on the relationship
between dropout and batch-normalization.

3. Multiplicative Regularization beyond Dropout
In dropout, we get a regularizing effect by multipling the activations of the previous layer by iid coin tosses
to randomly zero out many of them during each SGD update. Here, we will consider a linear-regression
problem but instead of randomly multiplying each input feature with a 0 or a 1 during SGD updates, we
will multiply each feature of our input with an iid random sample of a normal distribution with mean µ and
variance σ2. In other words, we perform the elementwise product R⊙X , where R is a matrix where every
iid entry Rij ∼ N (µ, σ2) and ⊙ represents elementwise multiplication.

It turns out that the expected training loss

L(w) = ERij∼N (µ,σ2)

[
||y − (R⊙X)w||22

]
can be put in the form

L(w) = ||y − (A) Xw||22 + (B) ||Γw||22

where Γ = (diag(X⊤X))1/2.

What are (A) and (B)?

Select one choice for (A):

○ µ

○ 2µ

○ µ
2

○ σ

○ 2σ

○ σ
2

Select one choice for (B):

○ µ2

○ 2µ2

○ µ2

2

○ σ2

○ 2σ2

○ σ2

2

Show some work below to justify your choices. Correct answers with incorrect or no supporting work will
not receive full credit.

4. Analyzing Distributed Training
For real-world models trained on lots of data, the training of neural networks is parallelized and accelerated
by running workers on distributed resources, such as clusters of GPUs. In this question, we will explore
three popular distributed training paradigms:

All-to-All Communication: Each worker maintains a copy of the model parameters (weights) and pro-
cesses a subset of the training data. After each iteration, each worker communicates with every other worker
and updates its local weights by averaging the gradients from all workers.

Parameter Server: A dedicated server, called the parameter server, stores the global model parameters.
The workers compute gradients for a subset of the training data and send these gradients to the parameter
server. The server then updates the global model parameters and sends the updated weights back to the
workers.

Ring All-Reduce: Arranges n workers in a logical ring and updates the model parameters by passing
messages in a circular fashion. Each worker computes gradients for a subset of the training data, splits
the gradients into n equally sized chunks and sends a chunk of the gradients to their neighbors in the ring.
Each worker receives the gradient chunks from its neighbors, updates its local parameters, and passes the

Homework 5, © UCB EECS 182, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Homework 5 @ 2023-09-23 14:04:54-07:00

updated gradient chunks along the ring. After n−1 passes, all gradient chunks have been aggregated across
workers, and the aggregated chunks are passed along to all workers in the next n−1 steps. This is illustrated
in Figure 4.

Figure 4: Example of Ring All-Reduce in a 3 worker setup. Source: Mu Et. al, GADGET: Online Resource Opti-
mization for Scheduling Ring-All-Reduce Learning Jobs

For each of the distributed training paradigms, fill in the total number of messages sent and the size
of each message. Assume that there are n workers and the model has p parameters, with p divisible by n.

Number of Messages Sent Size of each message

All-to-All p

Parameter Server 2n

Ring All-Reduce n(2(n− 1))

5. Coding Question: Batchnorm, Dropout and Convolutions
In this assignment, you will implement batch normalization, dropout, and convolutions using NumPy and
PyTorch. For this assignment, we recommend using Google Colab as some PCs or laptops may not support

Homework 5, © UCB EECS 182, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 4

Homework 5 @ 2023-09-23 14:04:54-07:00

GPU-based PyTorch.

Attention: This coding task will take approximately 4 to 6 hours to complete, taking into account the time
required for training the model. Please plan accordingly and start early to ensure adequate time for comple-
tion.

The assignment consists of three parts:

Implementing Batch Norm and Dropout. Open bn_drop.ipynb and follow the instructions in the
notebook. You will implement the forward and backward propagation of dropout and batch normal-
ization in NumPy. A GPU runtime is not required for this part.

Implement convolution and spatial batch norm. Open cnn.ipynb and follow the instructions in the
notebook. You will implement the forward and backward propagation of convolutional layers and
spatial dropout in NumPy. A GPU runtime is not required for this part.

Use deep learning framework. Open pytorch_cnn.ipynb and follow the instructions in the note-
book. For this part, you will need to switch to a GPU runtime (details can be found in the notebook).
You will implement a convolutional neural network with convolution layers, batch normalization, and
dropout using PyTorch and train it on a GPU. You also have the opportunity to improve or design your
own neural network.

Please answer the following question in your submission:

(a) Draw the computational graph of training-time batch normalization In input of the computational
graph should be X, γ, β, the output of the computational graph should be Y, and the intermediate
nodes are µ, σ2,Z.

(b) (Optional) Derive the closed-form back-propagation of a batch normalization layer (during
training). Include the answer in your written assignment.

Specifically, given dyi,j =
∂L
∂Yi,j

for every i, j, Please derive
∂L

∂Xi,j
for every i, j as a function of

dy,X, µ, σ2, ϵ, γ, β.

(c) Explain what you see in this experiment. What does it suggest about dropout?
(d) Briefly describe your neural network design and the procedure of hyperparameter tuning.

6. Understanding Dropout (Coding Question)
In this question, you will analyze the effect of dropout in a simplified setting. Please follow the instructions
in dropout.ipynb and answer the questions in your submission of the written assignment. The notebook
does not need to be submitted.

(a) (No dropout, least-square) The mathematical expression of the OLS solution, and the solution
calculated in the code cell.

(b) (No dropout, gradient descent) The solution in the code cell. Are the weights obtained by training
with gradient descent the same as those calculated using the closed-form least squares method?

(c) (Dropout, least-square) The solution in the code cell.
(d) (Dropout, gradient descent) Describe the shape of the training curve. Are the weights obtained by

training with gradient descent the same as those calculated using the closed-form least squares
method?

Homework 5, © UCB EECS 182, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Homework 5 @ 2023-09-23 14:04:54-07:00

(e) (Dropout, gradient descent, large batch size) Describe the loss curve and compare it with the loss
curve in the last part. Why are they different? Also compare the trained weights with the one
calculated by the least-square formula.

(f) Refer back to the cells you ran in part (e). Analyze how and why adding dropout changes the
following: (i) How large were the final weights w1 and w2 compared to each other. (ii) How large
the contribution of each term (i.e. 10w1 + w2) is to the final output. Why does this change occur?
(This does not need to be a formal math proof).

(g) (Optional) Sweeping over the dropout rate Fill out notebook section (G). You should see that as the
dropout rate changes, w1 and w2 change smoothly, except for a discontinuity when dropout rates are
0. Explain this discontinuity.

(h) (Optional) Optimizing with Adam: Run the cells in part (H). Does the solution change when you
switch from SGD to Adam? Why or why not?

(i) Dropout on real data: Run the notebook cells in part (I), and report on how they affect the final
performance.

7. Directed and Undirected Graphs

Figure 5: Simple Undirected Graph

Figure 5 shows a simple undirected graph whose adjacency matrices we want to make sure you can write
down. Generally, an unnormalized adjacency matrix between the nodes of a directed or undirected graph is
given by:

Ai,j =

{
1 : if there is an edge between node i and node j,

0 : otherwise.
(6)

This will be a symmetric matrix for undirected graphs. For a directed graph, we have:

Ai,j =

{
1 : if there is an edge from node i to node j,

0 : otherwise.
(7)

This need not to be symmetric for a directed graph, and is in fact typically not a symmetric matrix when we
are thinking about directed graphs (otherwise, we’d probably be thinking of them as undirected graphs).

Similarly, the degree matrix of an undirected graph is a diagonal matrix that contains information about the
degree of each vertex. In other words, it contains the number of edges attached to each vertex and it is given
by:

Di,j =

{
deg(vi) : if i == j,

0 : otherwise.
(8)

Homework 5, © UCB EECS 182, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 6

Homework 5 @ 2023-09-23 14:04:54-07:00

where the degree deg(vi) of a vertex counts the number of times an edge terminates at that vertex.

For directed graphs, the degree matrix could be In-Degree when we count the number of edges coming into
a particular node and Out-Degree when we count the number of edges going out of the node. We’ll use the
terms in-degree matrix or out-degree matrix to make it clear which one we are invoking.

Sometimes, imbalanced weights may undesirably affect the matrix spectrum (eigenvalues and eigenvectors).
This occurs when a vertex with a large degree results in a large diagonal entry in the Laplacian matrix
dominating the matrix properties. To solve that issue, a normalization scheme is applied which aims to make
the influence of such vertices more equal to that of other vertices, by dividing the entries of the Adjacency
matrix by the vertex degrees.

In that sense, a normalized adjacency matrix is given by:

ANormalized = AD−1 (9)

and a symmetrically normalized adjacency matrix is given by

ASymNorm = D−1/2AD−1/2 (10)

Additionally, the Laplacian matrix relates many useful properties of a graph. In fact, the spectral decom-
position of the Laplacian matrix of a graph allows for the construction of low-dimensional embeddings that
appear in many machine learning applications. In other words, there is a relation between the properties
of a graph and the spectra (eigenvalues and eigenvectors) of matrices associated with the graph, such as its
adjacency matrix or Laplacian matrix.

Given a simple graph G with n vertices v1, ..., vn, its unnormalized Laplacian matrix Ln×n is defined
element-wise as:

Li,j =


deg(vi) : if i == j,

−1 : if i != j and vi is adjacent to vj ,

0 : otherwise.

(11)

or equivalently by the matrix:

L = D −A (12)

where D is the degree matrix and A is the adjacency matrix of the graph.

We could also compute the symmetrically normalized Laplacian which is inherited from the adjacency
matrix normalization scheme as shown below:

LSymNorm= I −ASymNorm (13)

where I is the identity matrix, A is the unnormalized adjacency matrix, and L is the unnormalized Laplacian.

Homework 5, © UCB EECS 182, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 7

Homework 5 @ 2023-09-23 14:04:54-07:00

(a) Show that LSymNorm could also be written as:

LSymNorm = D−1/2LD−1/2 (14)

where D is the dregree matrix, and L is the unnormalized Laplacian.

(b) Write the unnormalized adjacency A, the degree matrix, D, and the symmetrically normalized
adjacency matrix, ASymNorm, of the graph in Figure. 5.

(c) Write the symmetrically normalized Laplacian matrix of the graph in Figure. 5.

(d) Compute A2, A3

We now want to estimate the traffic flow of inner downtown Berkeley and we know the road network
shown below. The goal of the estimation is to estimate the traffic flow on eache road segment. The
flow estimates should satisfy the conservation of vehicles exactly at each intersection as indicated by
the arrows.

Figure 6: Simple Directed Graph

The intersections are labeled a to h. The road segments are labeled 1 to 22. The arrows indicate the
direction of traffic.
Hint: think about the best way to represent the road network in terms of matrices, vectors, etc.

(e) Write the unnormalized adjacency matrix of the graph in Figure 6.

(f) Write the In-degree Din and Out-degree Dout matrix of the graph in Figure. 6.

(g) Write both of the symmetrically normalized In-degree and Out-degree Laplacian matrix of the
graph in Figure. 6.

Homework 5, © UCB EECS 182, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 8

Homework 5 @ 2023-09-23 14:04:54-07:00

(h) [Optional] It is good to read https://arxiv.org/pdf/1609.02907.pdf and https://
distill.pub/2021/understanding-gnns/ to learn about the importance of the Adjacency
and Laplacian matrices in graph representation.

8. Homework Process and Study Group
Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework?

Contributors:

• Peter Wang.

• Saagar Sanghavi.

• Jerome Quenum.

• Anant Sahai.

• Romil Bhardwaj.

• Sheng Shen.

• Suhong Moon.

• Jake Austin.

• Kevin Li.

• Linyuan Gong.

• Olivia Watkins.

• Anrui Gu.

• Matthew Lacayo.

• Past EECS 282 and 227 Staff.

Homework 5, © UCB EECS 182, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 9

https://arxiv.org/pdf/1609.02907.pdf
https://distill.pub/2021/understanding-gnns/
https://distill.pub/2021/understanding-gnns/

