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EECS 182 Deep Neural Networks
Fall 2023 Anant Sahai Homework 2
This homework is due on Sunday, September 10, 2023, at 10:59PM.

1. Why Learning Rates Cannot be Too Big
To understand the role of the learning rate, it is useful to understand it in the context of the simplest possible
problem first.

Suppose that we want to solve the scalar equation

σw = y (1)

where we know that σ > 0. We proceed with an initial condition w0 = 0 by using gradient descent to
minimize the squared loss

L(w) = (y − σw)2 (2)

which has a derivative with respect to the parameter w of −2σ(y − σw).

Gradient descent with a learning rate of η follows the recurrence-relation or discrete-time state evolution of:

wt+1 = wt + 2ησ(y − σwt)

= (1− 2ησ2)wt + 2ησy. (3)

(a) For what values of learning rate η > 0 is the recurrence (3) stable?
(HINT: Remember the role of the unit circle in determining the stability or instability of such recur-
rences. If you keep taking higher and higher positive integer powers of a number, what does that
number has to be like for this to converge?)

(b) The previous part gives you an upper bound for the learning rate η that depends on σ beyond which
we cannot safely go. If η is below that upper bound, how fast does wt converge to its final solution
w∗ = y

σ? i.e. if we wanted to get within a factor (1 − ϵ) of w∗, how many iterations t would we
need?
(HINT: The absolute value of the error of current w to the optimality might help.)

(c) Suppose that we now have a vector problem where we have two parameters w[1], w[2]. One with a
large σℓ and the other with a tiny σs. i.e. σℓ ≫ σs and we have the vector equation we want to solve:[

σℓ 0
0 σs

][
w[1]
w[2]

]
=

[
y[1]
y[2]

]
. (4)

We use gradient descent with a single learning rate η to solve this problem starting from an initial
condition of w = 0.
For what learning rates η > 0 will we converge? Which of the two σi is limiting our learning
rate?
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(d) For the previous problem, depending on η, σℓ, σs, which of the two dimensions is converging
faster and which is converging slower?

(e) The speed of convergence overall will be dominated by the slower of the two. For what value of η
will we get the fastest overall convergence to the solution?

(f) Comment on what would happen if we had more parallel problems with σi that all were in between σℓ
and σs? Would they influence the choice of possible learning rates or the learning rate with the
fastest convergence?

(g) Using what you know about the SVD, how is the simple scalar and parallel scalar problem analysis
above relevant to solving general least-squares problems of the form Xw ≈ y using gradient
descent?

2. Accelerating Gradient Descent with Momentum
Consider the problem of finding the minimizer of the following objective:

L(w) = ||y −Xw||22 (5)

In the previous homework, we proved that gradient descent (GD) algorithm can converge and derive the
convergence rate. In this homework, we will add the momentum term and how it affects to the convergence
rate. The optimization procedure of gradient descent+momentum is given below:

wt+1 = wt − ηzt+1

zt+1 = (1− β)zt + βgt, (6)

where gt = ∇L(wt), η is learning rate and β defines how much averaging we want for the gradient. Note
that when β = 1, the above procedure is just the original gradient descent.

Let’s investigate the effect of this change. We’ll see that this modification can actually ’accelerate’ the
convergence by allowing larger learning rates.

(a) Recall that the gradient descent update of 5 is

wt+1 =
(
I − 2η(XTX)

)
wt + 2ηXT y (7)

and the minimizer is

w∗ = (XTX)−1XT y (8)

The geometric convergence rate (in the sense of what base is there for convergence as ratet) of this
procedure is

rate = max
i

|1− 2ησ2
i | (9)

You saw on the last homework that if we choose the learning rate that maximizes Eq. 9, the optimal
learning rate, η∗ is

η∗ =
1

σ2
min + σ2

max
, (10)
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where σmax and σmin are the maximum and minimum singular value of the matrix X . The correspond-
ing optimal convergence rate is

optimal rate =
(σmax/σmin)

2 − 1

(σmax/σmin)2 + 1
(11)

Therefore, how fast ordinary gradient descent converges is determined by the ratio between the maxi-
mum singular value and the minimum singular value as above.
Now, let’s consider using momentum to smooth the gradients before taking a step in Eq.6.

wt+1 = wt − ηzt+1

zt+1 = (1− β)zt + β(2XTXwt − 2XT y) (12)

We can use the SVD of the matrix X = UΣV T , where Σ = diag(σmax, σ2, . . . , σmin) with the same
(potentially rectangular) shape as X . This allows us to reparameterize the parameters wt and averaged
gradients zt as below:

xt = V T (wt − w∗)

at = V T zt. (13)

Please rewrite Eq. 12 with the reparameterized variables, xt[i] and at[i]. (xt[i] and at[i] are i-th
components of xt and at respectively.)

(b) Notice that the above 2 × 2 vector/matrix recurrence has no external input. We can derive the 2 × 2
system matrix Ri from above such that[

at+1[i]
xt+1[i]

]
= Ri

[
at[i]
xt[i]

]
(14)

Derive Ri.
(c) Use the computer to symbolically find the eigenvalues of the matrix Ri.

When are they purely real? When are they repeated and purely real? When are they complex?
(d) For the case when they are repeated, what is the condition on η, β, σi that keeps them stable

(strictly inside the unit circle)? What is the highest learning rate η as a function of β and σi that
results in repeated eigenvalues?

(e) For the case when the eigenvalues are real, what is the condition on η, β, σi that keeps them stable
(strictly inside the unit circle)? What is the range of the learning rate? Express with β, σi

(f) For the case when the eigenvalues are complex, what is the condition on η, β, σi that keeps them
stable (strictly inside the unit circle)? What is the highest learning rate η as a function of β and
σi that results in complex eigenvalues?

(g) (This question might take more time than others) Now, apply what you have learned to the following
problem. Assume that β = 0.1 and we have a problem with two singular values σ2

max = 5 and
σ2

min = 0.05. What learning rate η should we choose to get the fastest convergence for gradient
descent with momentum? Compare how many iterations it will take to get within 99.9% of the
optimal solution (starting at 0) using this learning rate and momentum with what it would take
using ordinary gradient descent.
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(h) The 2 questions below are based on the Jupyter Notebook given in this url. Please open the corre-
sponding notebook and follow the instructions to answer the following questions. You don’t need to
submit the ipynb file.
How does σi (the eigenvalues) influence the gradients and paramters updates?

(i) Question: Comparing gradient descent and gradient descent with momentums, which one converges
faster for this task? Why?

3. Regularization and Instance Noise
Say we have m labeled data points (xi, yi)

m
i=1, where each xi ∈ Rn and each yi ∈ R. We perform data

augmentation by adding some noise to each vector every time we use it in SGD. This means for all points i,
we have a true input xi and add noise Ni to get the effective random input seen by SGD:

X̌i = xi +Ni

The i.i.d. random noise vectors Ni are distributed as Ni ∼ N (0, σ2In).

We can conceptually arrange these noise-augmented data points into a random matrix X̌ ∈ Rm×n, where
row X̌

⊤
i represents one augmented datapoint. Similarly we arrange the labels yi into a vector y.

X̌ =


X̌

⊤
1

X̌
⊤
2

...

X̌
⊤
m

 , where X̌i ∈ Rn , and y =


y1
y2
...
ym

 ∈ Rm

One way of thinking about what SGD might do is to consider learning weights that minimize the expected
least squares objective for the noisy data matrix:

argmin
w

E[∥X̌w − y∥2] (15)

(a) Show that this problem (15) is equivalent to a regularized least squares problem:

argmin
w

1

m
∥Xw − y∥2 + λ∥w∥2 (16)

You will need to determine the value of λ.
Hint: write the squared norm of a vector as an inner product, expand, and apply linearity of expecta-
tion.
Now consider a simplified example where we only have a single scalar datapoint x ∈ R and its
corresponding label y ∈ R. We are going to analyze this in the context of gradient descent. For the
t-th step of gradient descent, we use a noisy datapoint X̌t = x + Nt which is generated by adding
different random noise values Nt ∼ N (0, σ2) to our underlying data point x. The noise values for
each iteration of gradient descent are i.i.d. We want to learn a weight w such that the squared-loss
function L(w) = 1

2(X̌w − y)2 is minimized. We initialize our weight to be w0 = 0.

(b) Let wt be the weight learned after the t-th iteration of gradient descent with data augmentation. Write
the gradient descent recurrence relation between E[wt+1] and E[wt] in terms of x, σ2, y, and
learning rate η.
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(c) For what values of learning rate η do we expect the expectation of the learned weight to converge
using gradient descent?

(d) Assuming that we are in the range of η for which gradient-descent converges, what would we expect
E[wt] to converge to as t → ∞? How does this differ from the optimal value of w if there were
no noise being used to augment the data?
(HINT: You can also use this to help check your work for part (a).)

4. An Alternate MAP Interpretation of Ridge Regression
Consider the Ridge Regression estimator,

argmin
w

∥Xw − y∥22 + λ∥w∥2

We know this is solved by

ŵ = (XTX + λI)−1XTy (17)

An alternate form of the Ridge Regression solution (often called the Kernel Ridge form) is given by

ŵ = XT (XXT + λI)−1y. (18)

We know that Ridge Regression can be viewed as finding the MAP estimate when we apply a prior on the
(now viewed as random parameters) W. In particular, we can think of the prior for W as being N (0, I)
and view the random Y as being generated using Y = xTW +

√
λN where the noise N is distributed iid

(across training samples) as N (0, 1). At the vector level, we have Y = XW +
√
λN, and then we know

that when we try to maximize the log likelihood we end up minimizing

argmin
w

1

λ
∥Xw − y∥22 + ∥w∥2 = argmin

w
∥Xw − y∥22 + λ∥w∥2.

The underlying probability space is that defined by the d iid standard normals that define the W and the n
iid standard normals that give the n different Ni on the training points. Note that the X matrix whose rows
consist of the n different inputs for the n different training points are not random.

Based on what we know about joint normality, it is clear that the random Gaussian vectors W and Y are
jointly normal. Use the following facts to show that the two forms of solution are identical.

• (17) is the MAP estimate for W given an observation Y = y (We showed this in HW1 last week, and
in discussion section)

• For jointly normal random variables, when you condition one set of variables on the values for the
others, the resulting conditional distribution is still normal.

• A normal random variable has its density maximized at its mean.

• For jointly normal random vectors that are zero mean, the formula for conditional expectation is

E[W|Y = y] = ΣWY Σ
−1
Y Y y (19)

where the ΣY Y is the covariance E[YYT ] of Y and ΣWY = E[WYT ] is the appropriate cross-
covariance of W and Y.
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5. Coding Question: Initialization and Optimizers
In this question, you’ll implement He Initialization and Different Optimizers. You will have the choice
between two options:

Use Google Colab (Recommended). Open this url and follow the instructions in the notebook.

Use a local Conda environment. Clone https://github.com/Berkeley-CS182/cs182hw2 and
refer to README.md for further instructions.

(a) What you observe in the mean of gradient norm plot above in the above plots? Try to give an expla-
nation.

6. (Optional) Visualizing Features from Local Linearization of Neural Nets
(Part II)
This question is a sequel to the question about local linearization of the network in the neighborhood of the
parameters. In this part, We will now compare shallow and deep networks, examine the effects of different
initialization strategies, and investigate the consequences of training a neural network on a mismatched
training data distribution.

We provide you with some starter code on Google Colab. For this question, please do not submit your
code to Gradescope. Instead, just include the answers to the questions in your submission of the written
assignment.

(a) What are the gradient norms of each layer when the init weight scale is small (-0.03 to 0.03)?

(b) Describe the performance of the model initialized with the small weight scale.

(c) Record and explain your observation of the singular values and principal features of the local
linearization gradient matrix of the model initialized with the small weight scale before and after
training.

(d) What are the gradient norms of each layer when the init weight scale is large (-3.0 to 3.0)?

(e) What happened when we try to train the model initialized with the large weight scale?
(f) What are the gradient norms of each layer when the neural network is initialize with your im-

plemented method?
(g) Based on your observation of the singular values and principal features of the local linearization gradi-

ent matrix, compare the properly-initialized neural network with the neural network initialized
with a very large weight scale. (before training)

(h) Describe the performance of the model initialized with your implemented method.

(i) Based on your observation of the singular values and principal features of the local linearization gra-
dient matrix, compare the trained shallow neural network (1 hidden layer) with the trained deep
neural network (4 hidden layers).

(j) Describe the performance of the model when the x values of training data range from -1.0 to 0.4

(k) Based on your observation of the singular values and principal features of the local linearization gradi-
ent matrix, compare the model trained with mismatched training data with models (both shallow
and deep model) trained with matched training data.
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7. Homework Process and Study Group
Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework? Write it down here where you’ll
need to remember it for the self-grade form.

Contributors:

• Anant Sahai.

• Sheng Shen.

• Suhong Moon.

• Gabriel Goh.

• Peter Wang.

• Saagar Sanghavi.

• Hao Liu.

• Andrew Ng.

• Linyuan Gong.
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