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EECS 182 Deep Neural Networks
Fall 2023 Anant Sahai Homework 1
This homework is due on Sunday, Sep 3, 2023, at 10:59PM.

1. Least Squares and the Min-norm problem from the Perspective of SVD
Consider the equation Xw = y, where X ∈ Rm×n is a non-square data matrix, w is a weight vector, and y
is vector of labels corresponding to the datapoints in each row of X .

Let’s say that X = UΣV T is the (full) SVD of X . Here, U and V are orthonormal square matrices, and Σ
is an m× n matrix with non-zero singular values (σi) on the "diagonal".

For this problem, we define Σ† an n × m matrix with the reciprocals of the singular values ( 1
σi

) along the
"diagonal".

(a) First, consider the case where m > n, i.e. our data matrix X has more rows than columns (tall matrix)
and the system is overdetermined. How do we find the weights w that minimizes the error between
Xw and y? In other words, we want to solve minw ∥Xw − y∥2.

(b) Plug in the SVD X = UΣV T and simplify. Be careful with dimensions!

(c) You’ll notice that the least-squares solution is in the form w∗ = Ay. What happens if we left-
multiply X by our matrix A? This is why the matrix A of the least-squares solution is called the
left-inverse.

(d) Now, let’s consider the case where m < n, i.e. the data matrix X has more columns than rows and
the system is underdetermined. There exist infinitely many solutions for w, but we seek the minimum-
norm solution, ie. we want to solve min ∥w∥2s.t.Xw = y. What is the minimum norm solution?

(e) Plug in the SVD X = UΣV T and simplify. Be careful with dimensions!

(f) You’ll notice that the min-norm solution is in the form w∗ = By. What happens if we right-multiply
X by our matrix B? This is why the matrix B of the min-norm solution is called the right-inverse.

2. The 5 Interpretations of Ridge Regression
(a) Perspective 1: Optimization Problem. Ridge regression can be understood as the unconstrained opti-

mization problem

argmin
w

∥y −Xw∥22 + λ∥w∥22, (1)

where X ∈ Rn×d is a data matrix, and y ∈ Rn is the target vector of measurement values. What’s new
compared to the simple OLS problem is the addition of the λ∥w∥2 term, which can be interpreted as a
"penalty" on the weights being too big.
Use vector calculus to expand the objective and solve this optimization problem for w.

(b) Perspective 2: "Hack" of shifting the Singular Values. In the previous part, you should have found the
optimal w is given by

w = (XTX + λI)−1XTy
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(If you didn’t get this, you should check your work for the previous part).
Let X = UΣV T be the (full) SVD of the X . Recall that U and V are square orthonormal (norm-
preserving) matrices, and Σ is a n × d matrix with singular values σi along the "diagonal". Plug
this into the Ridge Regression solution and simplify. What happens to the singular values of
(XTX + λI)−1XT when σi << λ? What about when σi >> λ?

(c) Perspective 3: Maximum A Posteriori (MAP) estimation. Ridge Regression can be viewed as finding
the MAP estimate when we apply a prior on the (now viewed as random parameters) W. In particular,
we can think of the prior for W as being N (0, I) and view the random Y as being generated using
Y = xTW +

√
λN where the noise N is distributed iid (across training samples) as N (0, 1). At the

vector level, we have Y = XW +
√
λN. Note that the X matrix whose rows are the n different

training points are not random.
Show that (1) is the MAP estimate for W given an observation Y = y.

(d) Perspective 4: Fake Data. Another way to interpret “ridge regression” is as the ordinary least squares
for an augmented data set — i.e. adding a bunch of fake data points to our data. Consider the following
augmented measurement vector ŷ and data matrix X̂:

ŷ =

[
y
0d

]
X̂ =

[
X√
λId

]
,

where 0d is the zero vector in Rd and Id ∈ Rd×d is the identity matrix. Show that the classical OLS
optimization problem argminw ∥ŷ − X̂w∥22 has the same minimizer as (1).

(e) Perspective 5: Fake Features. For this last interpretation, let’s instead construct an augmented design
matrix in the following way:

X̌ = [X
√
λIn]

i.e. we stack X with
√
λIn horizontally. Now our problem is underdetermined: the new dimension

d+ n is larger than the number of points n. Therefore, there are infinitely many values η ∈ Rd+n for
which X̌η = y. We are interested in the min-norm solution, ie. the solution to

argmin
η

∥η∥22 s.t. X̌η = y. (2)

Show that this is yet another form of ridge regression and that the first d coordinates of η∗ form
the minimizer of (1).

(f) We know that the Moore-Penrose pseudo-inverse for an underdetermined system (wide matrix) is
given by A† = AT (AAT )−1, which corresponds to the min-norm solution for Aη = z. That is, the
optimization problem

argmin ∥η∥2s.t.Aη = z

is solved by η = A†z. Let ŵ be the minimizer of (1).
Use the pseudo-inverse to show that solving to the optimization problem in (2) yields

ŵ = XT (XXT + λI)−1y

Then, show that this is equivalent to the standard formula for Ridge Regression

ŵ = (XTX + λI)−1XTy
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Hint: It may be helpful to review Kernel Ridge Form.

(g) We know that the solution to ridge regression (1) is given by ŵr = (X⊤X + λI)−1X⊤y. What
happens when λ → ∞? It is for this reason that sometimes ridge regularization is referred to as
“shrinkage.”

(h) What happens to the solution of ridge regression when you take the limit λ → 0? Consider both
the cases when X is wide (underdetermined system) and X is tall (overdetermined system).

3. General Case Tikhonov Regularization
Consider the optimization problem:

min
x

||W1(Ax− b)||22 + ||W2(x− c)||22

Where W1, A, and W2 are matrices and x, b and c are vectors. W1 can be viewed as a generic weighting of
the residuals and W2 along with c can be viewed as a generic weighting of the parameters.

(a) Solve this optimization problem manually by expanding it out as matrix-vector products, setting the
gradient to 0, and solving for x.

(b) Construct an appropriate matrix C and vector d that allows you to rewrite this problem as

min
x

∥Cx− d∥2

and use the OLS solution (x∗ = (CTC)−1CTd) to solve. Confirm your answer is in agreement with
the previous part.

(c) Choose a W1, W2, and c such that this reduces to the simple case of ridge regression that you’ve seen
in the previous problem, x∗ = (ATA+ λI)−1ATb.

4. Coding Fully Connected Networks
In this coding assignment, you will be building a fully-connected neural network from scratch using NumPy.
You will have the choice between two options:

Use Google Colab (Recommended). Open this url and follow the instructions in the notebook.

Use a local Conda environment. Clone https://github.com/Berkeley-CS182/cs182fa23_
public, cd to hw/hw1/code/networks/problem, and refer to README.md for further in-
structions.

Please submit the .pdf export of only the jupyter notebook when it is completed. In addition, please answer
the following question:

(a) Did you notice anything about the comparative difficulty of training the three-layer net vs train-
ing the five layer net?

5. Visualizing features from local linearization of neural nets
This problem expects you to modify the Jupyter Notebook you were given in the first discussion section for
the course to allow the visualization of the effective “features” that correspond to the local linearization of
the network in the neighborhood of the parameters.
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We provide you with some starter code in the course repo, or you can use Google Colab. For this question,
please submit the .pdf export of the jupyter notebook when it is completed. In addition, answer the
questions below, including plots from the notebook where relevant.

(a) Visualize the features corresponding to ∂

∂w
(1)
i

y(x) and ∂

∂b
(1)
i

y(x) where w
(1)
i are the first hidden

layer’s weights and the b(1)i are the first hidden layer’s biases. These derivatives should be evaluated
at at least both the random initialization and the final trained network. When visualizing these features,
plot them as a function of the scalar input x, the same way that the notebook plots the constituent
“elbow” features that are the outputs of the penultimate layer.

(b) During training, we can imagine that we have a generalized linear model with a feature matrix cor-
responding to the linearized features corresponding to each learnable parameter. We know from our
analysis of gradient descent, that the singular values and singular vectors corresponding to this feature
matrix are important.
Use the SVD of this feature matrix to plot both the singular values and visualize the “principle
features” that correspond to the d-dimensional singular vectors multiplied by all the features
corresponding to the parameters.
(HINT: Remember that the feature matrix whose SVD you are taking has n rows where each row cor-
responds to one training point and d columns where each column corresponds to each of the learnable
features. Meanwhile, you are going to be plotting/visualizing the “principle features” as functions of
x even at places where you don’t have training points.)

(c) Augment the jupyter notebook to add a second hidden layer of the same size as the first hidden layer,
fully connected to the first hidden layer. Allow the visualization of the features corresponding to
the parameters in both hidden layers, as well as the “principle features” and the singular values.

6. Homework Process and Study Group
Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework?

Contributors:

• Saagar Sanghavi.

• Alexander Tsigler.

• Anant Sahai.

• Jane Yu.

• Philipp Moritz.

• Soroush Nasiriany.
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• Linyuan Gong.

• Luke Jaffe.

• Sheng Shen.
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