Lecture 7: General and Bottom-Up Parsing

A Little Notation

Here and in lectures to follow, we'll often have to refer to general productions or derivations. In these, we'll use various alphabets to mean various things:

- Capital roman letters are nonterminals (A, B, \ldots).
- Lower-case roman letters are terminals (or tokens, characters, etc.)
- Lower-case greek letters are sequences of zero or more terminal and nonterminal symbols, such as appear in sentential forms or on the right sides of productions (α, β, \ldots).
- Subscripts on lower-case greek letters indicate individual symbols within them, so $\alpha=\alpha_{1} \alpha_{n} \ldots \alpha_{n}$ and each α_{i} is a single terminal or nonterminal.
So $A::=\alpha$ might describe the production e : := e '+' t ,
\ldots and $B \Rightarrow \alpha A \gamma \Rightarrow \alpha \beta \gamma$ might describe the derivation steps
$\mathrm{e} \Rightarrow \mathrm{e}$ '+' $\mathrm{t} \Rightarrow \mathrm{e}$ '+' ID
(α is e ' ${ }^{\prime}$ '; A is $\mathrm{t} ; B$ is e ; and γ is empty.)

Parsing So Far

- We have seen that recursive-descent parsing it a simple and straightforward way to convert a grammar to a program that parses source using that grammar.
- However, because one has to predict which production to take without having seen the source tokens to be produced, it needs workarounds, as we've seen.
- In particular, must eliminate left-recursion and perform left factoring to make sure that branches are unique.
- So let's see what happens when we put off the decision about what production to use until after we've examined the text to be produced.
- This entails processing the children of a node in the parse tree before deciding on the production for that node; we determine the parse tree from the bottom up.

Fixing Recursive Descent

- First, let's define an impractical but simple implementation of a topdown parsing routine.
- For nonterminal A and string $S=c_{1} c_{2} \ldots c_{n}$, we'll define parse (A, S) to return the length of a valid prefix of S derivable from A.
- That is, parse $\left(A, c_{1} c_{2} \ldots c_{n}\right)=k$, where

Abstract body of parse (A, S)

- Can formulate top-down parsing analogously to NFAs.

```
parse (A, S):
    """Assuming A is a nonterminal and S = cc}\mp@subsup{c}{2}{}\ldots\mp@subsup{c}{n}{}\mathrm{ is a string, return
        integer k such that A can derive the prefix string c
    Choose production 'A: }\mp@subsup{\alpha}{1}{}\mp@subsup{\alpha}{2}{}\cdots\mp@subsup{\alpha}{m}{\prime}\mathrm{ ' for A (nondeterministically)
k = 0
for x in }\mp@subsup{\alpha}{1}{},\mp@subsup{\alpha}{2}{},\cdots,\mp@subsup{\alpha}{m}{}\mathrm{ :
    if x is a terminal:
                if x == c}\mp@subsup{c}{k+1}{}\mathrm{ :
                    k += 1
                else:
            GIVE UP
        else:
        k += parse (x, cck+1 \cdotsc.cn)
    return k
```

- Let the start symbol be p with exactly one production: p ::= $\quad=-1$.
- We'll say that a call to parse returns a value if some set of choices for productions (the blue step) would not give up (just like NFA).
- Then if parse (p, S) returns a value, S must be in the language.

Making a Deterministic Algorithm

- If we had an infinite supply of processors, could just spawn new ones at each "Choose" line.
- Some would give up, some loop forever, but on correct programs, at least one processor would get through.
- To do this for real (say with one processor), need to keep track of all possibilities systematically.
- This is the idea behind Earley's algorithm:
- Handles any context-free grammar.
- Finds all parses of any string.
- Can recognize or reject strings in $O\left(N^{3}\right)$ time for ambiguous grammars, $O\left(N^{2}\right)$ time for "nondeterministic grammars", or $O(N)$ time for deterministic grammars (such as accepted by Bison or CUP).

Example

Consider parsing S="ID*ID-1" with a grammar from last time:

```
\(p::=e^{\prime}-1\)
e : : = t
    |e '/',
    |e '*'t
\(\mathrm{t}::=\mathrm{ID}\)
```



```
parse( \(p, S\) ):
parse(p,S):
    Choose p : : = e , ' -1
```



```
    Choose è (e, \(\begin{gathered}\text { parse } \\ \text { par }\end{gathered}\)
```



```
\(\mathrm{k}_{i}\) means "the vari-
able k in the call to
parse that is nested
\(i\) deep." Outermost k
is \(\mathrm{k}_{1}\). Likewise for \(\mathrm{S}_{i}\).
```



```
choose t ::= ID:
check \(\mathrm{S}_{3}\left[\mathrm{k}_{3}+1\right]==\mathrm{S}_{3}[1]==\mathrm{ID} ; \mathrm{OK}\)
                                    \(\mathrm{k}_{3}+=1\); return 1 (so \(\mathrm{k}_{2}+=1\) )
                                    return 3
```

 Check \(S\left[k_{1}+1\right]==S[4]==\) ' \(\dashv^{\prime}: ~ O K\)
 $\mathrm{k}_{1}+=1$; return 4

Last modified: Mon Feb 11 01:05:40 2019

Earley's Algorithm: I

- First, reformulate to use recursion instead of looping. Assume the string $S=c_{1} \cdots c_{n}$ is fixed.
- Redefine parse:
parse (A: $\alpha \bullet \beta, \mathbf{s}, \mathrm{k})$:
"""Assumes A: $\alpha \beta$ is a production in the grammar, $0<=\mathrm{s}<=\mathrm{k}<=\mathrm{n}$, and α can produce the string $c_{s+1} \cdots c_{k}$.

$$
\text { Returns integer } j \text { such that } \beta \text { can produce } c_{k+1} \cdots c_{j} . " "
$$

- Or diagrammatically, parse returns an integer j such that:

$$
c_{1} \cdots c_{s} \underbrace{c_{s+1} \cdots c_{k}}_{\alpha \stackrel{*}{\Longrightarrow}} \underbrace{c_{k+1} \cdots c_{j}}_{\beta \stackrel{*}{\Longrightarrow}} c_{j+1} \cdots c_{n}
$$

Farley's Algorithm: II

```
parse (A ::= \alpha\bullet\beta, s, k):
    """Assumes A ::= \alpha\beta is a production in the grammar,
        0<= s <= k <= n, and \alpha can produce the string c}\mp@subsup{c}{s+1}{}\cdots\mp@subsup{c}{k}{}\mathrm{ .
        Returns integer j such that }\beta\mathrm{ can produce }\mp@subsup{c}{k+1}{}\cdots\mp@subsup{c}{j}{}.""
    if }\beta\mathrm{ is empty:
        return k
    Assume }\beta\mathrm{ has the form }x
    if }x\mathrm{ is a terminal:
        if }x==\mp@subsup{c}{k+1}{}\mathrm{ :
            return parse(A ::= \alphax\bullet \delta, s, k+1)
        else:
            GIVE UP
    else:
        Choose production 'x ::= }\kappa\mathrm{ ' for x (nondeterministically)
        j = parse(x ::= \bullet к, k, k)
        return parse (A ::= \alphax\bullet \delta, s, j)
```

- Now do all possible choices that result in such a way as to avoid redundant work ("nondeterministic memoization").
- That is, if parse is called with the same three arguments as a previous call, just use the results) of the previous call.

Example

Grammar

$\mathrm{p}::=\mathrm{e}$ '†'
$\mathrm{e}::=\mathrm{s}$ I | e '+' e
$\mathrm{s}::=$ '
Chart. Headings are values of k and c_{k+1} (raised symbols). Item labels (a-f) trace the "ancestry" of each item. (Have shortened ': :=' to ':' for compactness.)

$$
\begin{aligned}
& \begin{array}{c}
4 \\
\text { ere: s } \mathrm{I} \bullet, 3 \\
\text { a. } \mathrm{p}: \mathrm{e}^{\prime} \dashv^{\prime} \bullet, 0
\end{array} \\
& \text { bye: e '+' er, } 0 \\
& \text { atp: er' } \dashv^{\prime}, 0
\end{aligned}
$$

Input String

- I + I †

Ambiguous Example

Grammar

Input String

$$
\begin{aligned}
& \mathrm{p}::=\mathrm{e} \text { 'f' } \\
& \mathrm{e}::=\mathrm{I} \text { | e '+' e }
\end{aligned}
$$

$$
I+I+I-1
$$

Chart. Only useful items shown.

0 I	1	2	I 3
$\begin{aligned} & \text { a.p: •e 'ل', } 0 \\ & \text { b.e: •e '+' e, 0 } \\ & \text { c.e: •I, 0 } \end{aligned}$	$\begin{aligned} & \text { c.e: I •, } 0 \\ & \text { b.e: e •' }+ \text { ' e, } 0 \end{aligned}$	$\begin{aligned} & \text { b.e: e '+'•e, 0 } \\ & \text { d.e: } \mathrm{I}, 2 \\ & \text { e. e: } \bullet \text { e '+' e, } 2 \end{aligned}$	$\begin{aligned} & \text { d.e: I •, } 2 \\ & \text { b.e: e '+' e •, } \\ & \text { e.e: e •'+' e, } 2 \\ & \text { b.e: e •'+' e, } \end{aligned}$

Adding Semantic Actions (II)

- On a chart, when we see an item A: $\alpha \bullet, s$ in column k, it tells us to
- Perform the semantic action corresponding to the production A : := α getting a semantic value v for the left-hand side A.
- For each item B: $\beta \bullet A \gamma, t$ in column s of the chart, when adding the item $\mathrm{B}: \beta A \bullet \gamma, t$ to column k, also attach value v to that instance of A in the new item.
- For all items derived from B: $\beta \bullet A \gamma, t$ as its dot is shifted, also attach v to the same instance of A.
This step is what provides the values of nonterminals needed to compute v values (in Bison notation: \$1, \$2, etc.; in CUP notation, labels such as e 1 and e 2 in the rule $e::=e: e 1^{\prime}+^{\prime} e: e 2$).

Adding Semantic Actions

- Using syntax-directed translation to get semantic values is pretty much like recursive descent.
- The call parse ($\mathrm{A}: \alpha \bullet \beta, \mathrm{s}, \mathrm{k}$) can return, in addition to j, the semantic value of the A that matches symbols $c_{s+1} \cdots c_{j}$.
- The value is computed during calls of the form parse (A: $\alpha^{\prime} \bullet, \mathrm{s}, \mathrm{k}$) (i.e., where the β part is empty). For terminal symbols, value is provided by the lexer.

Example with Semantic Values

Grammar

$\mathrm{p}: \mathrm{e}: \mathrm{a}^{\prime} \dagger^{\prime}$	\{: RESULT = a; :\}
e : t:b	\{: RESULT = b; :\}
e : e:a '+' t:b	\{: RESULT = a + b; :\}
t : I:a	\{: RESULT = a; :\}
t : t:a '*' I:b	\{: RESULT = a * b; :\}

Chart. Only useful items shown. Semantic values are subscripts; red items show where they are computed.

Handling Ambiguity in Semantics (Sketch)

- Ambiguity really only important here when computing semantic actions.
- Rather than being satisfied with a single path through the chart, we look at all paths.
- The call parse (A: $\alpha \bullet \beta, \mathbf{s}, \mathrm{k}$) can return a set of semantic values.
- Accordingly, we attach sets of semantic values to nonterminals.

