Lecture 6: Top-Down Parsing

Beating Grammars into Programs

- A BNF grammar looks like a recursive program. Sometimes it works to treat it that way.
- Assume the existence of
- A function 'next' that returns the syntactic category of the next token (without side-effects);
- A function 'scan(C)' that checks that the next syntactic category is C and then reads another token into next(). Returns the previous value of next().
- A function ERROR for reporting errors.
- Strategy: Translate each nonterminal, A, into a function that reads an A according to one of its productions and returns the semantic value computed by the corresponding action.
- Result is a recursive-descent parser.

Example: Lisp Expression Recognizer

Grammar

```
def prog ():
    L
def sexp ():
    if
```

\qquad

``` :
    elif
```

\qquad

``` :
```

```
    else:
```

```
    else:
```

```
def atom ():
```

def atom ():
if :
else:
def elist ():
if

``` \(\qquad\)
``` :
```

prog $::=\operatorname{sexp} f^{\prime}$
sexp $::=$ atom

	$\mid \quad\left(\right.$, elist $\left.{ }^{\prime}\right) \prime$
elist $::=\epsilon$	
	$\mid$ sexp elist
atom $::=$	SYM
	$\mid$ NUM
	$\mid$ STRING

## Example: Lisp Expression Recognizer

## Grammar

```
def prog ():
 sexp(); scan(-1)
def sexp ():
 if
```

$\qquad$

``` :
 elif
```

$\qquad$

``` :
 else:
def atom ():
 if :
else:
def elist ():
if
``` \(\qquad\)
prog : := sexp ' \(\dashv^{\prime}\)
\(\operatorname{sexp}::=\) atom
\begin{tabular}{rl} 
& \(\mid\) \\
& \(\mid,(\prime\) elist ')', \\
elist \(:\) & \(:=\epsilon\) \\
& \(\mid\) sexp elist \\
atom \(::=\) & SYM \\
& \(\mid\) NUM \\
& \(\mid\) STRING
\end{tabular} :

\section*{Example: Lisp Expression Recognizer}

\section*{Grammar}
    | sexp elist def atom ():
```

def prog ():
sexp(); scan(-\)
def sexp ():
if next() in [SYM, NUM, STRING]:
atom()
elif

```
\(\qquad\)
``` :
 else:
 if :
 else:
def elist ():
 if
```

$\qquad$

``` :
```


## Example: Lisp Expression Recognizer

## Grammar

```
def prog ():
 sexp(); scan(-1)
def sexp ():
 if next() in [SYM, NUM, STRING]:
 atom()
 elif next() == '(':
 scan('('); elist(); scan(')')
 else:
def atom ():
 if
 :
 else:
def elist ():
 if
```

$\qquad$

``` :
```


## Example: Lisp Expression Recognizer

## Grammar

```
def prog ():
 sexp(); scan(-1)
def sexp ():
 if next() in [SYM, NUM, STRING]:
 atom()
 elif next() == '(':
 scan('('); elist(); scan(')')
 else:
 scan('\''); sexp()
def atom ():
 if
 :
 else:
def elist ():
 if
```

$\qquad$

``` :
```


## Example: Lisp Expression Recognizer

## Grammar

```
def prog ():
 sexp(); scan(-1)
def sexp ():
 if next() in [SYM, NUM, STRING]:
 atom()
 elif next() == '(':
 scan('('); elist(); scan(')')
 else:
 scan('\''); sexp()
def atom ():
 if next() in [SYM, NUM, STRING]:
 scan(next())
 else:
def elist ():
 if
```

$\qquad$

``` :
```


## Example: Lisp Expression Recognizer

## Grammar

```
def prog ():
 sexp(); scan(-1)
def sexp ():
 if next() in [SYM, NUM, STRING]:
 atom()
 elif next() == '(':
 scan('('); elist(); scan(')')
 else:
 scan('\''); sexp()
def atom ():
 if next() in [SYM, NUM, STRING]:
 scan(next())
 else:
 ERROR()
def elist ():
 if
```

$\qquad$ :

## Example: Lisp Expression Recognizer

## Grammar

```
def prog ():
 sexp(); scan(-1)
def sexp ():
 if next() in [SYM, NUM, STRING]:
 atom()
 elif next() == '(':
 scan('('); elist(); scan(')')
 else:
 scan('\''); sexp()
def atom ():
 if next() in [SYM, NUM, STRING]:
 scan(next())
 else:
 ERROR()
def elist ():
 if next() in [SYM, NUM, STRING, '(', "'"]:
 sexp(); elist();
```


## Expression Recognizer with Actions

- Can make the nonterminal functions return semantic values.
- Assume lexer somehow supplies semantic values for tokens, if needed

```
elist ::= \epsilon {: RESULT = emptyList; :}
 | sexp:head elist:tail {: RESULT = cons(head, tail); :}
def elist ():
 if next() in [SYM, NUM, STRING, '(', ")"]:
 else:
 return emptyList
```


## Expression Recognizer with Actions

- Can make the nonterminal functions return semantic values.
- Assume lexer somehow supplies semantic values for tokens, if needed

```
elist ::= \epsilon {: RESULT = emptyList; :}
 | sexp:head elist:tail {: RESULT = cons(head, tail); :}
def elist ():
 if next() in [SYM, NUM, STRING, '(', ")"]:
 v1 = sexp(); v2 = elist(); return cons(v1,v2)
 else:
 return emptyList
```


## Grammar Problems I

In a recursive-descent parser, what goes wrong here?

$$
\begin{aligned}
& \text { p ::= e '†' } \\
& \text { e ::= t:t1 } \\
& \text { | e:lft '/' t:rgt \{: RESULT = makeTree(DIV, lft, rgt); :\} } \\
& \text { | e:lft '*' t:rgt \{: RESULT = makeTree(MULT, lft, rgt); :\} }
\end{aligned}
$$

## Grammar Problems I

In a recursive-descent parser, what goes wrong here?

$$
\begin{aligned}
& \text { p ::= e '†' } \\
& \mathrm{e}::=\mathrm{t}: \mathrm{t} 1 \quad\{: \text { RESULT = t1; : }\} \\
& \text { | e:lft '/' t:rgt \{: RESULT = makeTree(DIV, lft, rgt); :\} } \\
& \text { | e:lft '*' t:rgt }\{: \text { RESULT = makeTree (MULT, lft, rgt); :\} }
\end{aligned}
$$

If we choose the second of third alternative for e, we'll get an infinite recursion. If we choose the first, we'll miss '/' and ' $*$ ' cases.

## Grammar Problems II

Well then: What goes wrong here?

```
p ::= e '†'
e :: = t:t1 \{: RESULT = t1; :\}
 | t:lft '/, e:rgt \{: RESULT = makeTree(DIV, lft, rgt); :\}
 | t:lft '*' e:rgt \{: RESULT = makeTree(MULT, lft, rgt) ; :\}
```


## Grammar Problems II

Well then: What goes wrong here?

```
p ::= e '†'
\(\mathrm{e}::=\mathrm{t}: \mathrm{t} 1 \quad\{:\) RESULT = t1; : \(\}\)
 | t:lft '/, e:rgt \{: RESULT = makeTree(DIV, lft, rgt); :\}
 | t:lft '*' e:rgt \{: RESULT = makeTree(MULT, lft, rgt) ; :\}
```

No infinite recursion, but we still don't know which right-hand side to choose for e.

## FIRST and FOLLOW

- If $\alpha$ is any string of terminals and nonterminals (like the right side of a production) then $\operatorname{FIRST}(\alpha)$ is the set of terminal symbols that start some string that $\alpha$ produces, plus $\epsilon$ if $\alpha$ can produce the empty string. For example:

```
p ::= e ' -''
e ::= s t
S ::= \epsilon | '+' | '_'
t : := ID | '(' e ')'
```

Since $\mathrm{e} \Rightarrow \mathrm{s} \mathrm{t} \Rightarrow \quad(\mathrm{e}) \Rightarrow \ldots$, we know that ' $(\mathrm{l} \in \operatorname{FIRST}(e)$. Since $s \Rightarrow \epsilon$, we know that $\epsilon \in \operatorname{FIRST}(s)$.

- If $X$ is a non-terminal symbol in some grammar, $G$, then FOLLOW $(X)$ is the set of terminal symbols that can come immediately after $X$ in some sentential form that $G$ can produce. For example, since $p$ $\Rightarrow$ e $\dashv \Rightarrow$ st $\dashv \Rightarrow \mathrm{s}^{\prime}\left({ }^{\prime} \mathrm{e}\right.$ ')' $\dashv \Rightarrow$..., we know that ' $(' \in \operatorname{FOLLOW}(s)$.


## Using FIRST and FOLLOW

- In a recursive-descent compiler where we have a choice of righthand sides to produce for non-terminal, $X$, look at the FIRST of each choice and take it if the next input symbol is in it...
- ... and if a right-hand side's FIRST set contains $\epsilon$, take it if the next input symbol is in FOLLOW $(X)$.


## Grammar Problems III

## What actions?

```
\(\mathrm{p}::=\mathrm{e}^{\prime} \dashv^{\prime}\)
e \(::=\mathrm{t}\) et \(\quad\{:\) ? 1 : \(\}\)
et \(::=\epsilon \quad\{:\) ?2 \(:\}\)
 \(\mid, /\) e \(\quad\{: ? 3:\}\)
 \(\left.\right|^{\prime} *\) ' e \(\{: ? 4:\}\)
t ::= I:i1 \{: RESULT = i1; :\}
```


## What are FIRST and FOLLOW?

## Grammar Problems III

## What actions?

Here, we don't have the previous
\{: ?1 :\} problems, but how do we build a

$$
\{: ? 2:\}
$$

tree that associates properly (left

$$
\{: ? 3:\} \text { to right), so that we don't interpret }
$$

$$
\{: ? 4:\} \quad I / I / I \text { as if it were } I /(I / I) ?
$$

\{: RESULT = i1; :\}

## What are FIRST and FOLLOW?

$$
\begin{aligned}
& \mathrm{p}::=\mathrm{e}^{\prime} \dashv^{\prime} \\
& \text { e }::=\mathrm{t} \text { et } \\
& \text { et : : = } \epsilon \\
& \text { | '/, e } \\
& \text { | '*' e } \\
& \text { t }::=\mathrm{I}: \mathrm{i1}
\end{aligned}
$$

## Grammar Problems III

## What actions?

$$
\begin{aligned}
& \text { p ::= e '†' } \\
& \text { e : : = t et } \\
& \text { et : := } \epsilon \\
& \text { | '/' e } \\
& \left.\right|^{\prime *} \text { e } \\
& \text { t : := I:i1 }
\end{aligned}
$$

Here, we don't have the previous
\{: ?1 :\} problems, but how do we build a
$\{: ? 2:\}$ tree that associates properly (left
$\{:$ ?3:\} to right), so that we don't interpret
\{: ? $4:\} \quad \mathrm{I} / \mathrm{I} / \mathrm{I}$ as if it were $\mathrm{I} /(\mathrm{I} / \mathrm{I})$ ?
\{: RESULT = i1; :\}

## What are FIRST and FOLLOW?

```
FIRST(p) = FIRST(e) = FIRST(t) = { I }
FIRST(et) = { \epsilon, '/', '*' }
FIRST('/' e) = { '/' } (when to use ?3)
FIRST('*' e) = { '*' } (when to use ?4)
FOLLOW(e) = { '\dashv' }
FOLLOW(et) = FOLLOW(e) (when to use ?2)
FOLLOW(t) = { '\dashv', '/', '*' }
```


## Using Loops to Roll Up Recursion

- There are ways to deal with problem in last slide within the pure framework, but why bother?
- Implement e procedure with a loop, instead:

```
def e():
 while _
 else:
return _
```


## Using Loops to Roll Up Recursion

- There are ways to deal with problem in last slide within the pure framework, but why bother?
- Implement e procedure with a loop, instead:

```
def e():
 r=t()
 while
```

$\qquad$

``` :
 if
```

$\qquad$

``` :
else:
return \(-\quad\)
```


## Using Loops to Roll Up Recursion

- There are ways to deal with problem in last slide within the pure framework, but why bother?
- Implement e procedure with a loop, instead:

```
def e():
 r=t()
 while next() in ['/', '*']:
 if
```

$\qquad$

``` :
 else:
 return _
```


## Using Loops to Roll Up Recursion

- There are ways to deal with problem in last slide within the pure framework, but why bother?
- Implement e procedure with a loop, instead:

```
def e():
 r=t()
 while next() in ['/', '*']:
 if next() == '/',
 scan('/'); t1 = t()
 r = makeTree (DIV, r, t1)
 else:
return _
```


## Using Loops to Roll Up Recursion

- There are ways to deal with problem in last slide within the pure framework, but why bother?
- Implement e procedure with a loop, instead:

```
def e():
 r=t()
 while next() in ['/', '*']:
 if next() == '/',
 scan('/'); t1 = t()
 r = makeTree (DIV, r, t1)
 else:
 scan('*'); t1 = t()
 return
```


## Using Loops to Roll Up Recursion

- There are ways to deal with problem in last slide within the pure framework, but why bother?
- Implement e procedure with a loop, instead:

```
def e():
 r=t()
 while next() in ['/', '*']:
 if next() == '/',
 scan('/'); t1 = t()
 r = makeTree (DIV, r, t1)
 else:
 \can('*'); t1 = t()
 return \underline{r}
```


## From Recursive Descent to Table Driven

- Our recursive descent parsers have a very regular structure.

Definition of nonterminal $A$ :


Program for $A$ :

```
def A():
 if next() in S S:
 translation of \alpha
 elif next() in S S :
 translation of }\mp@subsup{\alpha}{2}{
```

- Here,

$$
S_{i}=\left\{\begin{array}{ll}
\operatorname{FIRST}\left(\alpha_{i}\right), & \text { if } \epsilon \notin \operatorname{FIRST}\left(\alpha_{i}\right) \\
\operatorname{FIRST}\left(\alpha_{i}\right) \cup \operatorname{FOLLOW}(A), & \text { otherwise. }
\end{array}\right\}
$$

- and the translation of $\alpha_{i}$ simply converts each nonterminal into a call and each terminal into a scan.
- If the $S_{i}$ do not overlap, we say the grammar is $\operatorname{LL}(1)$ : input can be processed from Left to right, producing a Leftmost derivation, and checking 1 symbol of input ahead to see which branch to take.


## Table-Driven LL(1)

- Because of this regular structure, we can represent the program as a table, and can write a general $\operatorname{LL}(1)$ parser that interprets any such table.
- Consider a previous example:


## Grammar

2. $\operatorname{sexp}$	= atom		Lookahead symbol						
3.	\| '(' elist ')'	Nonterminal	(	)	,	SYM	NUM	STRING	$\dashv$
4.	$\left.\right\|^{\prime}$ ' $\prime \prime$ sexp	prog	(1)		(1)	(1)	(1)	(1)	
5. elist	$=\epsilon$	sexp	(3)		(4)	(2)	(2)	(2)	
6.	\| sexp elist	elist		(5)	(6)	(6)	(6)	(6)	(5)
7. atom	: : = SYM	atom				(7)	(8)	(9)	
8.	I NUM								
9.	\| STRING								

- The table shows nonterminal symbols in the left column and the other columns show which production to use for each possible lookahead symbol.
- Grammar is $\operatorname{LL}(1)$ when this table has at most one production per entry.


## A General LL(1) Algorithm

Given a fixed table $T$ and grammar $G$, the function LLparse $(X)$, where parameter $X$ is a grammar symbol, may be defined

```
def LLparse(X):
 if X is a terminal symbol:
 scan(X)
 else:
 prod = T[X][next()]
 Let p}\mp@subsup{p}{1}{}\mp@subsup{p}{2}{}\cdots\mp@subsup{p}{n}{}\mathrm{ be the right-hand side of production prod
 for i in range(n):
 LLparse(}\mp@subsup{p}{i}{}\mathrm{)
```

