
Lecture 6: Top-Down Parsing

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 1

Beating Grammars into Programs

• A BNF grammar looks like a recursive program. Sometimes it works
to treat it that way.

• Assume the existence of

– A function ‘next’ that returns the syntactic category of the next
token (without side-effects);

– A function ‘scan(C)’ that checks that the next syntactic category
is C and then reads another token into next(). Returns the previ-
ous value of next().

– A function ERROR for reporting errors.

• Strategy: Translate each nonterminal, A, into a function that reads
an A according to one of its productions and returns the semantic
value computed by the corresponding action.

• Result is a recursive-descent parser.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 2

Example: Lisp Expression Recognizer

Grammar

prog ::= sexp ’⊣’

sexp ::= atom

| ’(’ elist ’)’

| ’\’’ sexp

elist ::= ǫ

| sexp elist

atom ::= SYM

| NUM

| STRING

def prog ():

def sexp ():

if :

elif :

else:

def atom ():

if :

else:

def elist ():

if :

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar

prog ::= sexp ’⊣’

sexp ::= atom

| ’(’ elist ’)’

| ’\’’ sexp

elist ::= ǫ

| sexp elist

atom ::= SYM

| NUM

| STRING

def prog ():

sexp(); scan(⊣)

def sexp ():

if :

elif :

else:

def atom ():

if :

else:

def elist ():

if :

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar

prog ::= sexp ’⊣’

sexp ::= atom

| ’(’ elist ’)’

| ’\’’ sexp

elist ::= ǫ

| sexp elist

atom ::= SYM

| NUM

| STRING

def prog ():

sexp(); scan(⊣)

def sexp ():

if next() in [SYM, NUM, STRING]:

atom()

elif :

else:

def atom ():

if :

else:

def elist ():

if :

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar

prog ::= sexp ’⊣’

sexp ::= atom

| ’(’ elist ’)’

| ’\’’ sexp

elist ::= ǫ

| sexp elist

atom ::= SYM

| NUM

| STRING

def prog ():

sexp(); scan(⊣)

def sexp ():

if next() in [SYM, NUM, STRING]:

atom()

elif next() == ’(’:

scan(’(’); elist(); scan(’)’)

else:

def atom ():

if :

else:

def elist ():

if :

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar

prog ::= sexp ’⊣’

sexp ::= atom

| ’(’ elist ’)’

| ’\’’ sexp

elist ::= ǫ

| sexp elist

atom ::= SYM

| NUM

| STRING

def prog ():

sexp(); scan(⊣)

def sexp ():

if next() in [SYM, NUM, STRING]:

atom()

elif next() == ’(’:

scan(’(’); elist(); scan(’)’)

else:

scan(’\’’); sexp()

def atom ():

if :

else:

def elist ():

if :

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar

prog ::= sexp ’⊣’

sexp ::= atom

| ’(’ elist ’)’

| ’\’’ sexp

elist ::= ǫ

| sexp elist

atom ::= SYM

| NUM

| STRING

def prog ():

sexp(); scan(⊣)

def sexp ():

if next() in [SYM, NUM, STRING]:

atom()

elif next() == ’(’:

scan(’(’); elist(); scan(’)’)

else:

scan(’\’’); sexp()

def atom ():

if next() in [SYM, NUM, STRING]:

scan(next())

else:

def elist ():

if :

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar

prog ::= sexp ’⊣’

sexp ::= atom

| ’(’ elist ’)’

| ’\’’ sexp

elist ::= ǫ

| sexp elist

atom ::= SYM

| NUM

| STRING

def prog ():

sexp(); scan(⊣)

def sexp ():

if next() in [SYM, NUM, STRING]:

atom()

elif next() == ’(’:

scan(’(’); elist(); scan(’)’)

else:

scan(’\’’); sexp()

def atom ():

if next() in [SYM, NUM, STRING]:

scan(next())

else:

ERROR()

def elist ():

if :

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 3

Example: Lisp Expression Recognizer

Grammar

prog ::= sexp ’⊣’

sexp ::= atom

| ’(’ elist ’)’

| ’\’’ sexp

elist ::= ǫ

| sexp elist

atom ::= SYM

| NUM

| STRING

def prog ():

sexp(); scan(⊣)

def sexp ():

if next() in [SYM, NUM, STRING]:

atom()

elif next() == ’(’:

scan(’(’); elist(); scan(’)’)

else:

scan(’\’’); sexp()

def atom ():

if next() in [SYM, NUM, STRING]:

scan(next())

else:

ERROR()

def elist ():

if next() in [SYM, NUM, STRING, ’(’, "’"]:

sexp(); elist();

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 3

Expression Recognizer with Actions

• Can make the nonterminal functions return semantic values.

• Assume lexer somehow supplies semantic values for tokens, if needed

elist ::= ǫ {: RESULT = emptyList; :}

| sexp:head elist:tail {: RESULT = cons(head, tail); :}

def elist ():

if next() in [SYM, NUM, STRING, ’(’, "’"]:

else:

return emptyList

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 4

Expression Recognizer with Actions

• Can make the nonterminal functions return semantic values.

• Assume lexer somehow supplies semantic values for tokens, if

elist ::= ǫ {: RESULT = emptyList;

| sexp:head elist:tail {: RESULT = cons(head,

def elist ():

if next() in [SYM, NUM, STRING, ’(’, "’"]:

v1 = sexp(); v2 = elist(); return cons(v1,v2)

else:

return emptyList

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture

Grammar Problems I

In a recursive-descent parser, what goes wrong here?

p ::= e ’⊣’

e ::= t:t1 {: RESULT = t1; :}

| e:lft ’/’ t:rgt {: RESULT = makeTree(DIV, lft, rgt); :}

| e:lft ’*’ t:rgt {: RESULT = makeTree(MULT, lft, rgt); :}

If we choose the second of third alternative for e, we’ll get an infinite
recursion. If we choose the first, we’ll miss ’/’ and ’*’ cases.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 5

Grammar Problems II

Well then: What goes wrong here?

p ::= e ’⊣’

e ::= t:t1 {: RESULT = t1; :}

| t:lft ’/’ e:rgt {: RESULT = makeTree(DIV, lft, rgt); :}

| t:lft ’*’ e:rgt {: RESULT = makeTree(MULT, lft, rgt); :}

No infinite recursion, but we still don’t know which right-hand side to
choose for e.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 6

FIRST and FOLLOW

• If α is any string of terminals and nonterminals (like the right side
of a production) then FIRST(α) is the set of terminal symbols that
start some string that α produces, plus ǫ if α can produce the empty
string. For example:

p ::= e ’⊣’

e ::= s t

s ::= ǫ | ’+’ | ’-’

t ::= ID | ’(’ e ’)’

Since e ⇒ s t ⇒ (e) ⇒ ..., we know that ‘(’ ∈ FIRST(e).
Since s ⇒ ǫ, we know that ǫ ∈ FIRST(s).

• IfX is a non-terminal symbol in some grammar,G, then FOLLOW(X)
is the set of terminal symbols that can come immediately after X

in some sentential form that G can produce. For example, since p

⇒ e ⊣ ⇒ s t ⊣ ⇒ s ’(’ e ’)’ ⊣ ⇒ ..., we know that
‘(’ ∈ FOLLOW(s).

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 7

Using FIRST and FOLLOW

• In a recursive-descent compiler where we have a choice of right-
hand sides to produce for non-terminal, X , look at the FIRST of
each choice and take it if the next input symbol is in it. . .

• . . . and if a right-hand side’s FIRST set contains ǫ, take it if the next
input symbol is in FOLLOW(X).

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 8

Grammar Problems III

What actions?

p ::= e ’⊣’

e ::= t et {: ?1 :}

et ::= ǫ {: ?2 :}

| ’/’ e {: ?3 :}

| ’*’ e {: ?4 :}

t ::= I:i1 {: RESULT = i1; :}

What are FIRST and FOLLOW?

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 9

Grammar Problems III

What actions?

p ::= e ’⊣’

e ::= t et {: ?1 :}

et ::= ǫ {: ?2 :}

| ’/’ e {: ?3 :}

| ’*’ e {: ?4 :}

t ::= I:i1 {: RESULT = i1; :}

Here, we don’t have the previous
problems, but how do we build a
tree that associates properly (left
to right), so that we don’t interpret
I/I/I as if it were I/(I/I)?

What are FIRST and FOLLOW?

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 9

Grammar Problems III

What actions?

p ::= e ’⊣’

e ::= t et {: ?1 :}

et ::= ǫ {: ?2 :}

| ’/’ e {: ?3 :}

| ’*’ e {: ?4 :}

t ::= I:i1 {: RESULT = i1; :}

Here, we don’t have the previous
problems, but how do we build a
tree that associates properly (left
to right), so that we don’t interpret
I/I/I as if it were I/(I/I)?

What are FIRST and FOLLOW?

FIRST(p) = FIRST(e) = FIRST(t) = { I }

FIRST(et) = { ǫ, ’/’, ’*’ }

FIRST(’/’ e) = { ’/’ } (when to use ?3)

FIRST(’*’ e) = { ’*’ } (when to use ?4)

FOLLOW(e) = { ’⊣’ }

FOLLOW(et) = FOLLOW(e) (when to use ?2)

FOLLOW(t) = { ’⊣’, ’/’, ’*’ }

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 9

Using Loops to Roll Up Recursion

• There are ways to deal with problem in last slide within the pure
framework, but why bother?

• Implement e procedure with a loop, instead:

def e():

while :

if :

else:

return

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

• There are ways to deal with problem in last slide within the pure
framework, but why bother?

• Implement e procedure with a loop, instead:

def e():

r = t()

while :

if :

else:

return

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

• There are ways to deal with problem in last slide within the pure
framework, but why bother?

• Implement e procedure with a loop, instead:

def e():

r = t()

while next() in [’/’, ’*’]:

if :

else:

return

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

• There are ways to deal with problem in last slide within the pure
framework, but why bother?

• Implement e procedure with a loop, instead:

def e():

r = t()

while next() in [’/’, ’*’]:

if next() == ’/’:

scan(’/’); t1 = t()

r = makeTree (DIV, r, t1)

else:

return

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

• There are ways to deal with problem in last slide within the pure
framework, but why bother?

• Implement e procedure with a loop, instead:

def e():

r = t()

while next() in [’/’, ’*’]:

if next() == ’/’:

scan(’/’); t1 = t()

r = makeTree (DIV, r, t1)

else:

scan(’*’); t1 = t()

r = makeTree (MULT, r, t1)

return

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

Using Loops to Roll Up Recursion

• There are ways to deal with problem in last slide within the pure
framework, but why bother?

• Implement e procedure with a loop, instead:

def e():

r = t()

while next() in [’/’, ’*’]:

if next() == ’/’:

scan(’/’); t1 = t()

r = makeTree (DIV, r, t1)

else:

scan(’*’); t1 = t()

r = makeTree (MULT, r, t1)

return r

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 10

From Recursive Descent to Table Driven

• Our recursive descent parsers have a very regular structure.

Definition of nonterminal A:

A ::= α1

| α2

| ...

| α3

Program for A:

def A():

if next() in S1:

translation of α1

elif next() in S2:

translation of α2

...

• Here,

Si =

FIRST(αi), if ǫ 6∈ FIRST(αi)
FIRST(αi) ∪ FOLLOW(A), otherwise.

• and the translation of αi simply converts each nonterminal into a call
and each terminal into a scan.

• If the Si do not overlap, we say the grammar is LL(1): input can be
processed from Left to right, producing a L eftmost derivation, and
checking 1 symbol of input ahead to see which branch to take.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 11

Table-Driven LL(1)

• Because of this regular structure, we can represent the program
as a table, and can write a general LL(1) parser that interprets any
such table.

• Consider a previous example:

Grammar
1. prog ::= sexp ’⊣’

2. sexp ::= atom

3. | ’(’ elist ’)’

4. | ’\’’ sexp

5. elist ::= ǫ

6. | sexp elist

7. atom ::= SYM

8. | NUM

9. | STRING

Lookahead symbol
Nonterminal () ’ SYM NUM STRING ⊣

prog (1) (1) (1) (1) (1)
sexp (3) (4) (2) (2) (2)
elist (6) (5) (6) (6) (6) (6) (5)
atom (7) (8) (9)

• The table shows nonterminal symbols in the left column and the
other columns show which production to use for each possible looka-
head symbol.

• Grammar is LL(1) when this table has at most one production per
entry.

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 12

A General LL(1) Algorithm

Given a fixed table T and grammar G, the function LLparse(X), where
parameter X is a grammar symbol, may be defined

def LLparse(X):

if X is a terminal symbol:

scan(X)

else:

prod = T[X][next()]

Let p1p2 · · · pn be the right-hand side of production prod

for i in range(n):

LLparse(pi)

Last modified: Tue Feb 5 17:11:49 2019 CS164: Lecture #7 13

	Lecture 6: Top-Down Parsing
	Beating Grammars into Programs
	Example: Lisp Expression Recognizer
	Expression Recognizer with Actions
	Grammar Problems I
	Grammar Problems II
	FIRST and FOLLOW
	Using FIRST and FOLLOW
	Grammar Problems III
	Using Loops to Roll Up Recursion
	From Recursive Descent to Table Driven
	Table-Driven LL(1)
	A General LL(1) Algorithm

