
Lecture 39: Program Verification

Announcements.

• Come to class on Friday to fill out the course survey with the help
of HKN, and get extra credit.

• Please edit (or add) responses to the team egistration page (see
Piazza). Currently, there’s lots of missing/erroneous date there,
which interferes with getting you access to grading logs.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 1

Extending Static Semantics

• Project 2 considered selected static properties of programs, both
of which assisted in translating the program.

– Scope analysis figured out what identifiers meant.

– Type analysis figured out what representations to use for certain
data.

• But type analysis served the additional function of discovering cer-
tain inconsistencies in a program before execution.

• These are not the only error-finding analyses possible before pro-
gram execution.

• The subject of program verification considers the internal consis-
tency of more general static properties of programs.

• The study of formal program verification began in the 1960s.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 2

Basic Goal

• The idea is to detect errors in programs before execution and thus
to increase our confidence in our programs’ correctness.

• Here, “error” is potentially much broader than it was in Project 2,
and includes such things as failing to conform to a specification of
what the program is intended to do.

• Today, we’ll take an introductory look at one technique for this pur-
pose, known as axiomatic semantics.

• Here, we are interested in statements of the form

{ P } S (Q }

where P and Q are assertions about the program statement and S
is a piece of program text.

• This statement means “If P is true just before statement S is ex-
ecuted and S terminates, then at that point Q will be true.”

• It asserts the weak correctness of S with respect to precondition
P and postcondition Q.

• Strong correctness is the same, but also requires that S terminate.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 3

Weakest Liberal Preconditions

• In order for

{ P } S (Q }

to be true, it suffices to show that P =⇒ ?([|S]|, Q). That is, P
implies some logical assertion that depends on S and Q.

• The usual name for ‘?’ is wlp, for weakest liberal precondition.

• Here, the term “weakest” means “least restrictive” or “most gen-
eral”, and ”liberal” refers to the fact that this precondition need
not guarantee termination of S.

• Another notation, wp([|S]|, Q), or weakest precondition, is a bit
stronger than the wlp; it implies both the wlp and termination of
S .

• We call wlp and wp predicate transformers, because they transform
the logical expression Q into another logical expression.

• By defining wlp or wp for all statements in a language, we effectively
define the dynamic semantics of the language.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 4

Examples of Predicate Transformations (I)

• We start with the most obvious:

wlp([|pass]|, Q) ≡ Q

• That is, the least restrictive condition that guarantees that Q is
true after executing pass in Python is Q itself.

• Since pass always terminates, in this case

wp([|pass]|, Q) ≡ Q

as well.

• Sequencing is also easy:

wlp([|S1;S2]|, Q) ≡ wlp([|S1]|,wlp([|S2]|, Q))

or basically composition of wlp.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 5

Examples of Predicate Transformations (II)

• If-then-else results in essentially a case analysis:

wlp([|if C then S1 else S2 fi]|, Q)

≡

(C =⇒ wlp([|S1]|, Q)) ∧ (¬C =⇒ wlp([|S2]|, Q))

• Or

“The weakest liberal precondition insuring that Q is true after
if C then S1 else S2 fi is that C being true must ensure that Q
will be true after S1 and that C being false must ensure that
Q is true after executing S2.”

• I am playing a bit fast and loose with notation here. The expression
C is in the programming language, whereas Q is in whatever asser-
tion language we are using to talk about programs written in that
language.

• For the purposes of this lecture, we’ll ignore the problems that can
arise here.

• Similarly, assume C and other expressions have no side-effects.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 6

Examples of Predicate Transformations (III)

• Assignment starts to get interesting.

• After executing X = E, of course, X will have value E had before
the assignment.

• So for Q to be true after the assignment, it must have been true
before as well, if we substitute the value of E for X.

• Formally,
wlp([|X =E]|, Q) ≡ Q[E/X]

where the notation A[α/β] means “the logical expression A with all
(free) instances of β replaced by α.”

• For example,

wlp([|X = X + 1]|, X > 2) ≡ (X + 1) > 2.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 7

Examples of Predicate Transformations (IV)

• The predicate transformations we’ve seen so far can all be done
completely mechanically by operations on the ASTs representing the
ststements and assertions (for example).

• The same could be done for while, but would require extending the
logical language used for assertions for every while statement in the
program. For various reasons, that is undesirable.

• So usually, finding the wlp for while statements requires a little
inventing from the programmer, in the form of a loop invariant.

• A loop invariant is an assertion at the beginning of the loop.

• The invariant assertion is intended to be true whenever the program
is just about to (re)check the conditional test of the loop.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 8

Rule for While Loops

• If we let the label W stand for the while statement

while C do S od

and let Iw stand for the (alleged) loop invariant the programmer
provides for this loop, we get the simple rule:

wlp([|W]|, Q) ≡ Iw

assuming we can prove that Iw really is a loop invariant: that is,

(C ∧ Iw =⇒ wlp([|S]|, Iw)) ∧ (¬C ∧ Iw =⇒ Q)

• This makes sense, because it means that

(a) if Iw is true as a precondition of the loop, and

(b) if whenever Iw and the loop condition are true, executing the loop
body maintains Iw (hence the name “invariant”), and finally

(c) if Iw is true and the loop condition C becomes false so that the
loop exits, then Q must be true.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 9

Example

• Consider an annotated program for computing xn:

{ n ≥ 0 ∧ x > 0 }

k = n; z = x; y = 1;

while k > 0 do

{ Invariant: y · zk = xn ∧ z > 0 ∧ k ≥ 0 }

if odd(k) then y = y * z; fi

z = z * z;

k = k // 2;

od

{ y = xn }

• So the wlp of the loop is (proposed to be) y · zk = xn ∧ z > 0 ∧ k ≥ 0.

• And therefore, the wlp of the whole program is

1 · xn = xn ∧ x > 0 ∧ n ≥ 0

(apply the assignment rule three times).

• This is obviously implied by n ≥ 0 ∧ x > 0. So far, so good.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 10

Example, Correctness at Termination

{ n ≥ 0 ∧ x > 0 }

k = n; z = x; y = 1;

while k > 0 do

{ Invariant: y · zk = xn ∧ z > 0 ∧ k ≥ 0 }

if odd(k) then y = y * z; fi

z = z * z;

k = k // 2;

od

{ y = xn }

• Now we need to show that the loop invariant really does imply Q (in
this case, y = xn) when the loop ends. In other words:

k ≤ 0 ∧ y · zk = xn ∧ z > 0 ∧ k ≥ 0 =⇒ y = xn

But since the left side of the implication means that k must be 0,
this too is obvious.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 11

Example: Invariant (I)

{ n ≥ 0 ∧ x > 0 }

k = n; z = x; y = 1;

while k > 0 do

{ Invariant: y · zk = xn ∧ z > 0 ∧ k ≥ 0 }

if odd(k) then y = y * z; fi

z = z * z;

k = k // 2;

od

{ y = xn }

• This leaves just the invariance of the alleged invariant to show:

k > 0∧y ·zk = xn∧z > 0∧k ≥ 0 =⇒ wlp([|S]|, y ·zk = xn∧z > 0∧k ≥ 0)

where S is the body of the loop.

• This simplifies to

y · zk = xn ∧ z > 0 ∧ k > 0 =⇒ wlp([|S]|, y · zk = xn ∧ z > 0 ∧ k ≥ 0)

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 12

Example: Invariant (II)

{ n ≥ 0 ∧ x > 0 }

k = n; z = x; y = 1;

while k > 0 do

{ Invariant: y · zk = xn ∧ z > 0 ∧ k ≥ 0 }

if odd(k) then y = y * z; fi

z = z * z;

k = k // 2;

od

{ y = xn }

• From

y · zk = xn ∧ z > 0 ∧ k > 0 =⇒ wlp([|S]|, y · zk = xn ∧ z > 0 ∧ k ≥ 0)

we get

y·zk = xn∧z > 0∧k > 0 =⇒ wlp([|if. . . fi]|, y·(z2)⌊k/2⌋ = xn∧z2 > 0∧⌊k/2⌋ ≥ 0)

or

y·zk = xn∧z > 0∧k > 0 =⇒ wlp([|if. . . fi]|, y·z2⌊k/2⌋ = xn∧z2 > 0∧⌊k/2⌋ ≥ 0)

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 13

Example: Invariant (III)

{ n ≥ 0 ∧ x > 0 }

k = n; z = x; y = 1;

while k > 0 do

{ Invariant: y · zk = xn ∧ z > 0 ∧ k ≥ 0 }

if odd(k) then y = y * z; fi

z = z * z;

k = k // 2;

od

{ y = xn }

• Finally, the conditional:

y·zk = xn∧z > 0∧k > 0 =⇒ wlp([|if. . . fi]|, y·z2⌊k/2⌋ = xn∧z2 > 0∧⌊k/2⌋ ≥ 0)

becomes

y · zk = xn ∧ z > 0 ∧ k > 0 =⇒
¬odd(k) =⇒ y · z2⌊k/2⌋ = xn ∧ z2 > 0 ∧ ⌊k/2⌋ ≥ 0
∧ odd(k) =⇒ y · z · z2⌊k/2⌋ = xn ∧ z2 > 0 ∧ ⌊k/2⌋ ≥ 0

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 14

Example: Invariant (IV)

{ n ≥ 0 ∧ x > 0 }

k = n; z = x; y = 1;

while k > 0 do

{ Invariant: y · zk = xn ∧ z > 0 ∧ k ≥ 0 }

if odd(k) then y = y * z; fi

z = z * z;

k = k // 2;

od

{ y = xn }

• And we are left to check:

y · zk = xn ∧ z > 0 ∧ k > 0 =⇒
¬odd(k) =⇒ y · z2⌊k/2⌋ = xn ∧ z2 > 0 ∧ ⌊k/2⌋ ≥ 0
∧ odd(k) =⇒ y · z · z2⌊k/2⌋ = xn ∧ z2 > 0 ∧ ⌊k/2⌋ ≥ 0

y · zk = xn ∧ z > 0 ∧ k > 0 =⇒
¬odd(k) =⇒ y · zk = xn

∧ odd(k) =⇒ y · zk = xn

y · zk = xn ∧ z > 0 ∧ k > 0 =⇒ y · zk = xn

• which is obvious.
Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 15

Termination

• We actually have the tools to find the “strong” version of wlp (also
implying termination):

wp(S,Q) ≡ wlp(S,Q) ∧ ¬wlp(S, false)

• (Huh? Why does this work?)

• More usual technique is to use variant expressions in the important
places (like loops):

while C do

{ e = e0 }

S

{ e < e0 }

where e is an expression whose value is in a well-founded set (such as
the non-negative integers), where all descending sequences of values
must have finite length.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 16

Limitations

• Even this small example involves a lot of tedious detail.

• Machine assistance helps “reduce” the problem to logic, but for gen-
eral programs the resulting assertions are at best challenging for
current theorem-proving techniques.

• Furthermore, it is tedious and error-prone to come up with for-
mal specifications (pre- and post-conditions and invariants) for even
moderately sized programs.

• Consider, for example, that our rules ignored the possibility of inte-
ger overflow (i.e., treated computer integer arithmetic as if it were
on the mathematical integers.)

• Nevertheless, some applications (like safety-critical software) war-
rant such efforts.

• But for general programs, the verification enterprise fell out of
favor in the 1980s.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 17

Rebirth

• However, by limiting our objectives, there are numerous uses for
the machinery described here.

• For example, there are certain program properties that are useful
to verify:

– Is this array index always in bounds here?

– Is this pointer always non-null here?

– Does this concurrent program ever deadlock?

• Thus a compiler could (in effect) insert assertions in front of cer-
tain statements:

{ i ≥ 0 ∧ i < A.length }

A[i] = E;

And then verify a piece of the program to show the assertions are
always true.

• Not only shows the program does not cause exceptions, but allows
the compiler to avoid generating code to check the value of i.

Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 18

	Lecture 39: Program Verification
	Extending Static Semantics
	Basic Goal
	Weakest Liberal Preconditions
	Examples of Predicate Transformations (I)
	Examples of Predicate Transformations (II)
	Examples of Predicate Transformations (III)
	Examples of Predicate Transformations (IV)
	Rule for While Loops
	Example
	Example, Correctness at Termination
	Example: Invariant (I)
	Example: Invariant (II)
	Example: Invariant (III)
	Example: Invariant (IV)
	Termination
	Limitations
	Rebirth

