Lecture 39: Program Verification		Extending Static Semantics	
 Announcements. Come to class on Friday to fill out the course survey with the help of HKN, and get extra credit. Please edit (or add) responses to the team egistration page (see Piazza). Currently, there's lots of missing/erroneous date there, which interferes with getting you access to grading logs. 		 Project 2 considered selected static of which assisted in translating the p Scope analysis figured out what id Type analysis figured out what rep data. But type analysis served the addition tain inconsistencies in a program before These are not the only error-finding gram execution. The subject of program verification tency of more general static properties The study of formal program verification 	properties of programs, both rogram. entifiers meant. resentations to use for certain al function of discovering cer- bre execution. analyses possible before pro- considers the internal consis- ies of programs. ation began in the 1960s.
Last modified: Wed May 1 13:56:37 2019	CS164: Lecture #39 1	Last modified: Wed May 1 13:56:37 2019	CS164: Lecture #39 2
Basic Goal		Weakest Liberal Preconditions	
• The idea is to detect errors in programs bef to increase our confidence in our programs' of bland, "appent" is petentially much based on the	fore execution and thus correctness.	• In order for $\{P \} S \{Q \}$	

- Here, "error" is potentially much broader than it was in Project 2, and includes such things as failing to conform to a specification of what the program is intended to do.
- Today, we'll take an introductory look at one technique for this purpose, known as *axiomatic semantics*.
- Here, we are interested in statements of the form

$\{P\} \mathcal{S} (Q\}$

where P and Q are assertions about the program statement and ${\cal S}$ is a piece of program text.

- This statement means "If P is true just before statement ${\cal S}$ is executed and ${\cal S}$ terminates, then at that point Q will be true."
- \bullet It asserts the weak correctness of ${\mathcal S}$ with respect to precondition P and postcondition Q.
- \bullet Strong correctness is the same, but also requires that ${\mathcal S}$ terminate.

Last modified: Wed May 1 13:56:37 2019

CS164: Lecture #39 4

to be true, it suffices to show that $P \implies ?(\llbracket S \rrbracket, Q)$. That is, P implies some logical assertion that depends on S and Q.

- The usual name for '?' is wlp, for weakest liberal precondition.
- \bullet Here, the term "weakest" means "least restrictive" or "most general", and "liberal" refers to the fact that this precondition need not guarantee termination of S.
- Another notation, wp([S], Q), or weakest precondition, is a bit stronger than the wlp; it implies both the wlp and termination of S.
- We call wlp and wp predicate transformers, because they transform the logical expression Q into another logical expression.
- By defining wlp or wp for all statements in a language, we effectively define the dynamic semantics of the language.

Examples of Predicate Transformations (I)

• We start with the most obvious:

 $\mathsf{wlp}(\llbracket \mathtt{pass} \rrbracket, Q) \equiv Q$

- \bullet That is, the least restrictive condition that guarantees that Q is true after executing pass in Python is Q itself.
- Since pass always terminates, in this case

 $\mathsf{wp}(\llbracket \mathtt{pass} \rrbracket, Q) \equiv Q$

as well.

• Sequencing is also easy:

 $\mathsf{wlp}(\llbracket \mathcal{S}_1; \mathcal{S}_2 \rrbracket, \ Q) \equiv \mathsf{wlp}(\llbracket \mathcal{S}_1 \rrbracket, \mathsf{wlp}(\llbracket \mathcal{S}_2 \rrbracket, Q))$

or basically composition of wlp.

Last modified: Wed May 1 13:56:37 2019

CS164: Lecture #39 5

Examples of Predicate Transformations (III)

- Assignment starts to get interesting.
- After executing X = E, of course, X will have value E had before the assignment.
- So for Q to be true after the assignment, it must have been true before as well, if we substitute the value of E for X.
- Formally,

$\mathsf{wlp}(\llbracket X = E \rrbracket, Q) \equiv Q[E/X]$

where the notation $A[\alpha/\beta]$ means "the logical expression A with all (free) instances of β replaced by $\alpha."$

• For example,

Examples of Predicate Transformations (II)

• If-then-else results in essentially a case analysis:

 $wlp(\llbracket if C \text{ then } S_1 \text{ else } S_2 \text{ fi} \rrbracket, Q) \equiv$

 $(C \implies \mathsf{wlp}(\llbracket S_1 \rrbracket, Q)) \land (\neg C \implies \mathsf{wlp}(\llbracket S_2 \rrbracket, Q))$

• Or

"The weakest liberal precondition insuring that Q is true after if C then S_1 else S_2 fi is that C being true must ensure that Qwill be true after S_1 and that C being false must ensure that Q is true after executing S_2 ."

- I am playing a bit fast and loose with notation here. The expression C is in the programming language, whereas Q is in whatever assertion language we are using to talk about programs written in that language.
- For the purposes of this lecture, we'll ignore the problems that can arise here.
- \bullet Similarly, assume C and other expressions have no side-effects.

Last modified: Wed May 1 13:56:37 2019

CS164: Lecture #39 6

Examples of Predicate Transformations (IV)

- The predicate transformations we've seen so far can all be done completely mechanically by operations on the ASTs representing the ststements and assertions (for example).
- The same could be done for **while**, but would require extending the logical language used for assertions for every **while** statement in the program. For various reasons, that is undesirable.
- So usually, finding the wlp for **while** statements requires a little inventing from the programmer, in the form of a *loop invariant*.
- A loop invariant is an assertion at the beginning of the loop.
- The invariant assertion is intended to be true whenever the program is just about to (re)check the conditional test of the loop.

Rule for While Loops

 \bullet If we let the label W stand for the while statement

while $C \ \operatorname{do} \ S \ \operatorname{od}$

and let I_w stand for the (alleged) loop invariant the programmer provides for this loop, we get the simple rule:

 $\mathsf{wlp}(\llbracket W \rrbracket, Q) \equiv I_w$

assuming we can prove that I_w really is a loop invariant: that is,

 $(C \wedge I_w \Longrightarrow \mathsf{wlp}(\llbracket S \rrbracket, I_w)) \wedge (\neg C \wedge I_w \Longrightarrow Q)$

- This makes sense, because it means that
- (a) if I_w is true as a precondition of the loop, and
- (b) if whenever I_w and the loop condition are true, executing the loop body maintains I_w (hence the name "invariant"), and finally
- (c) if I_w is true and the loop condition C becomes false so that the loop exits, then Q must be true.

Example

• Consider an annotated program for computing x^n :

{ $n \ge 0 \land x > 0$ }
k = n; z = x; y = 1;
while k > 0 do
 { Invariant: $y \cdot z^k = x^n \land z > 0 \land k \ge 0$ }
 if odd(k) then y = y * z; fi
 z = z * z;
 k = k // 2;
od
{ $y = x^n$ }

- So the wlp of the loop is (proposed to be) $y \cdot z^k = x^n \wedge z > 0 \wedge k \ge 0$.
- And therefore, the wlp of the whole program is

 $1 \cdot x^n = x^n \wedge x > 0 \wedge n \ge 0$

(apply the assignment rule three times).

• This is obviously implied by $n \ge 0 \land x > 0$. So far, so good.

Last modified: Wed May 1 13:56:37 2019

CS164: Lecture #39 10

Example, Correctness at Termination

```
{ n \ge 0 \land x > 0 }
k = n; z = x; y = 1;
while k > 0 do
    { Invariant: y \cdot z^k = x^n \land z > 0 \land k \ge 0 }
    if odd(k) then y = y * z; fi
    z = z * z;
    k = k // 2;
od
{ y = x^n }
```

• Now we need to show that the loop invariant really does imply Q (in this case, $y = x^n$) when the loop ends. In other words:

 $k \le 0 \land y \cdot z^k = x^n \land z > 0 \land k \ge 0 \Longrightarrow y = x^n$

But since the left side of the implication means that $k \mbox{ must}$ be 0, this too is obvious.

Example: Invariant (I)

```
{ n \ge 0 \land x > 0 }
k = n; z = x; y = 1;
while k > 0 do
   { Invariant: y \cdot z^k = x^n \land z > 0 \land k \ge 0 }
   if odd(k) then y = y * z; fi
   z = z * z;
   k = k // 2;
od
{ y = x^n }
```

• This leaves just the invariance of the alleged invariant to show:

 $k > 0 \land y \cdot z^k = x^n \land z > 0 \land k \ge 0 \Longrightarrow \mathsf{wlp}(\llbracket S \rrbracket, y \cdot z^k = x^n \land z > 0 \land k \ge 0)$ where S is the body of the loop.

• This simplifies to

 $y \cdot z^k = x^n \wedge z > 0 \wedge k > 0 \Longrightarrow \mathsf{wlp}(\,\llbracket S \rrbracket, y \cdot z^k = x^n \wedge z > 0 \wedge k \ge 0)$

Last modified: Wed May 1 13:56:37 2019

CS164: Lecture #39 9

Example: Invariant (II)	Example: Invariant (III)		
<pre>{ $n \ge 0 \land x > 0$ } k = n; z = x; y = 1; while k > 0 do { Invariant: $y \cdot z^k = x^n \land z > 0 \land k \ge 0$ } if odd(k) then y = y * z; fi z = z * z; k = k // 2; od { $y = x^n$ }</pre>	<pre>{ $n \ge 0 \land x > 0$ } k = n; z = x; y = 1; while k > 0 do { Invariant: $y \cdot z^k = x^n \land z > 0 \land k \ge 0$ } if odd(k) then y = y * z; fi z = z * z; k = k // 2; od { $y = x^n$ }</pre>		
• From	• Finally, the conditional:		
$y \cdot z^k = x^n \wedge z > 0 \wedge k > 0 \Longrightarrow wlp(\llbracket S \rrbracket, y \cdot z^k = x^n \wedge z > 0 \wedge k \ge 0)$	$y \cdot z^k = x^n \wedge z > 0 \wedge k > 0 \Longrightarrow wlp(\llbracket if \dots fi \rrbracket, y \cdot z^{2\lfloor k/2 \rfloor} = x^n \wedge z^2 > 0 \wedge \lfloor k/2 \rfloor \ge 0)$		
we get	becomes		
$\begin{split} y \cdot z^k &= x^n \wedge z > 0 \wedge k > 0 \Longrightarrow wlp(\llbracket if \dots fi \rrbracket, y \cdot (z^2)^{\lfloor k/2 \rfloor} = x^n \wedge z^2 > 0 \wedge \lfloor k/2 \rfloor \ge 0) \\ or \\ y \cdot z^k &= x^n \wedge z > 0 \wedge k > 0 \Longrightarrow wlp(\llbracket if \dots fi \rrbracket, y \cdot z^{2\lfloor k/2 \rfloor} = x^n \wedge z^2 > 0 \wedge \lfloor k/2 \rfloor \ge 0) \end{split}$	$\begin{array}{l} y \cdot z^{k} = x^{n} \wedge z > 0 \wedge k > 0 \Longrightarrow \\ \neg odd(k) \Longrightarrow y \cdot z^{2\lfloor k/2 \rfloor} = x^{n} \wedge z^{2} > 0 \wedge \lfloor k/2 \rfloor \ge 0 \\ \wedge \operatorname{odd}(k) \Longrightarrow y \cdot z \cdot z^{2\lfloor k/2 \rfloor} = x^{n} \wedge z^{2} > 0 \wedge \lfloor k/2 \rfloor \ge 0 \end{array}$		
Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 13	Last modified: Wed May 1 13:56:37 2019 CS164: Lecture #39 14		
Example: Invariant (IV)	Termination		
Example: Invariant (IV) $\begin{cases} n \ge 0 \land x > 0 \ \} \\ k = n; \ z = x; \ y = 1; \\ \text{while } k > 0 \text{ do} \\ \{ \text{ Invariant: } y \cdot z^k = x^n \land z > 0 \land k \ge 0 \ \} \\ \text{ if odd}(k) \text{ then } y = y * z; \text{ fi} \\ z = z * z; \\ k = k // 2; \\ \text{od} \\ \{ y = x^n \} \end{cases}$ • And we are left to check: $y \cdot z^k = x^n \land z > 0 \land k > 0 \Rightarrow \\ - \text{odd}(k) \Rightarrow y \cdot z^{2\lfloor k/2 \rfloor} = x^n \land z^2 > 0 \land \lfloor k/2 \rfloor \ge 0 \\ \wedge \text{ odd}(k) \Rightarrow y \cdot z \cdot z^{2\lfloor k/2 \rfloor} = x^n \land z^2 > 0 \land \lfloor k/2 \rfloor \ge 0 \\ y \cdot z^k = x^n \land z > 0 \land k > 0 \Rightarrow \\ - \text{odd}(k) \Rightarrow y \cdot z \cdot z^{2\lfloor k/2 \rfloor} = x^n \land z^2 > 0 \land \lfloor k/2 \rfloor \ge 0 \\ y \cdot z^k = x^n \land z > 0 \land k > 0 \Rightarrow \\ - \text{odd}(k) \Rightarrow y \cdot z^k = x^n \\ \land \text{ odd}(k) \Rightarrow y \cdot z^k = x^n \\ \end{pmatrix}$	<pre>Termination • We actually have the tools to find the "strong" version of wlp (also implying termination): wp(S,Q) ≡ wlp(S,Q) ∧ ¬wlp(S, false) • (Huh? Why does this work?) • More usual technique is to use variant expressions in the important places (like loops): while C do { e = e0 } S { e < e0 } where e is an expression whose value is in a well-founded set (such as the non-negative integers), where all descending sequences of values must have finite length.</pre>		

Last modified: Wed May 1 13:56:37 2019

Limitations

- Even this small example involves a lot of tedious detail.
- Machine assistance helps "reduce" the problem to logic, but for general programs the resulting assertions are at best challenging for current theorem-proving techniques.
- Furthermore, it is tedious and error-prone to come up with formal specifications (pre- and post-conditions and invariants) for even moderately sized programs.
- Consider, for example, that our rules ignored the possibility of integer overflow (i.e., treated computer integer arithmetic as if it were on the mathematical integers.)
- Nevertheless, some applications (like safety-critical software) warrant such efforts.
- But for general programs, the verification enterprise fell out of favor in the 1980s.

- However, by limiting our objectives, there are numerous uses for the machinery described here.
- For example, there are certain *program properties* that are useful to verify:
 - Is this array index always in bounds here?
 - Is this pointer always non-null here?
 - Does this concurrent program ever deadlock?
- Thus a compiler could (in effect) insert assertions in front of certain statements:

{ $i \ge 0 \land i < A.length$ } A[i] = E;

And then verify a piece of the program to show the assertions are always true.

 \bullet Not only shows the program does not cause exceptions, but allows the compiler to avoid generating code to check the value of i.

Last modified: Wed May 1 13:56:37 2019	CS164: Lecture #39 17	Last modified: Wed May 1 13:56:37 2019	C5164: Lecture #39 18