
Lecture 38: Register Allocation

[Adapted from notes by R. Bodik and G. Necula]

Topics:

• Memory Hierarchy Management

• Register Allocation:

– Register interference graph

– Graph coloring heuristics

– Spilling

• Cache Management

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 1



The Memory Hierarchy

Computers employ a variety of memory devices, trading off capacity,
persistence, and speed (some years ago):

Device Access time (latency) Capacity
Registers 1 cycle 256–2000 bytes

Cache 2–5 cycles 256KB–16MB

Main memory 100 cycles 32MB — >16GB

Disk 20K–10M cycles 10GB — > 1TB

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 2



Managing the Memory Hierarchy

• Programs are written as if there are only two kinds of memory: main
memory and disk (variables and files).

• Programmer is responsible for moving data from disk to memory.

• Hardware is responsible for moving data between memory and caches

• Compiler is responsible for moving data between memory and regis-
ters (which the programmer usually doesn’t see).

• Cache and register sizes are growing slowly: important to manage
them well.

• The cost of a cache miss is growing, and the widening gap is bridged
with more caches.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 3



The Register Allocation Problem

• Our three-address code style uses temporaries profligately, simpli-
fying code generation and optimization, but complicating final trans-
lation to assembly

• Hence, the register allocation problem:

Rewrite the intermediate code to use fewer temporaries than
there are machine registers

• So we must assign more temporaries to a register, without changing
the program behavior

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 4



An Example

Consider the program

a := c + d

e := a + b

f := e - 1

assuming that assumption that a and e die after use. Then,

• Can reuse a after a + b

• Same with temporary e after e - 1

• Can allocate a, e, and f all to one register (r1):

r1 := c + d

r1 := r1 + b

r1 := r1 - 1

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 5



Basic Register Allocation Idea

• So in general, since the value in a dead temporary is not needed for
the rest of the computation,

Any set of temporaries can share a single physical register if at
most one is alive at any program point.

• This rule is easy to apply to basic blocks. General CFGs are consid-
erably trickier.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 6



Going Global: Allocation in CFGs (I)

First step is to compute live variables before each statement. In this
example, assume that variable b is live at exit.

a := b + c

d := -a

e := d + f

e < 0

{b, c, f}

{a, c, f}

{c, d, f}

{c, d, e, f}

f := 2 * e
{c, e}

b := d + e

e := e - 1

e > 0

{c, d, e, f}

{b, c, e, f}

{b, c, e, f}

b := f + c

b > c

{c, f}

{b, c, f}
{b}

{b}

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 7



Allocation in CFGs (II): Register Interference Graphs

• The sets in the previous slide indicate sets of virtual registers that
are simultaneously alive at all points in the program, and therefore
cannot share a physical register.

• Can summarize all these sets by constructing an undirected graph
with a node for each virtual register, and an edge between any two
virtual registers that appear together in the same set somewhere in
the program.

• Call this the register interference graph (RIG).

a

b

c

d

e

f
• The RIG extracts exactly the
information needed to char-
acterize legal register assign-
ments

• Gives global (over the entire
CFG) picture of the register re-
quirements

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 8



Allocation in CFGs (III): Graph Coloring

• A coloring of a graph is an assignment of colors to nodes, such that
nodes connected by an edge have different colors.

• A graph is k-colorable if it has a coloring with k colors.

• In our problem, colors = registers. That is,

If we have k available machine registers and our register inter-
ference graph is k-colorable, then the coloring gives us a register
assignment.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 9



Graph Coloring: Example

Consider the sample RIG:

a r2

b r3

c r4

d r3

r2 e

r1 f

• There is no coloring with
fewer than 4 colors

• There are 4-colorings of
this graph

Before . After

A: a := b + c A: r2 := r3 + r4

d := -a r3 := -r2

e := d + f r2 := r3 + r1

if e >= 0 jump C if r1 >= 0 jump C

B: f := 2 * e B: r1 := 2 * r2

jump D jump D

C: b := d + e C: r3 := r3 + r2

e := e - 1 r2 := r2 - 1

if e <= 0 jump E if r2 <= 0 jump E

D: b := f + c D: r3 := r1 + r4

if b <= c jump A if r3 <= r4 jump A

E: E:

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 10



Allocation in CFGs (III): Computing Graph Colorings

• The remaining problem is to compute a coloring for the interference
graph.

• Unfortunately, this problem is hard (NP-hard). No guaranteed fast
algorithms are known,

• And besides, a coloring might not exist for a given number of regis-
ters.

• For (1), we’ll use heuristics.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 11



Graph Coloring Heuristic: Motivation

• Observation:

– Pick a node t with < k neighbors in RIG.

– Eliminate t and its edges from RIG.

– If the resulting graph has a k-coloring then so does the original
graph.

• Reason: whatever n ≤ k − 1 colors t’s neighbors have, we know we’ll
always be able to color t (since there are k colors). Therefore, elim-
inating t cannot affect the colorability of the other nodes.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 12



Graph Coloring Heuristic

The following works well in practice:

• Pick a node t with < k neighbors.

• Push t on a stack and remove it from the RIG.

• Repeat until the graph has no nodes.

• Then start popping nodes from the stack and adding them back to
the graph, assigning colors to each as we go (starting with the last
node added).

• At each step, we know we can pick a color different from those
assigned to already colored neighbors, by the observation on the
last slide.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 13



Example of Using the Heuristic (I)

Start with our sample RIG and with k = 4:

a

b

c

d

e

f

Stack: []

Now remove a and then d, giving

b

c
e

f

Stack: [d, a] (top on left)

Now all nodes have < 4 neighbors; remove. Stack is [f, e, b, c, d, a].

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 14



Graph Coloring Example (2)

• Now we assign colors . . . er, . . . registers to: f, e, b, c, d, a in that
order.

• At each step, guaranteed there’s a free register.

r1 f

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 15



Graph Coloring Example (2)

• Now we assign colors . . . er, . . . registers to: f, e, b, c, d, a in that
order.

• At each step, guaranteed there’s a free register.

r2 e

r1 f

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 15



Graph Coloring Example (2)

• Now we assign colors . . . er, . . . registers to: f, e, b, c, d, a in that
order.

• At each step, guaranteed there’s a free register.

b r3

r2 e

r1 f

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 15



Graph Coloring Example (2)

• Now we assign colors . . . er, . . . registers to: f, e, b, c, d, a in that
order.

• At each step, guaranteed there’s a free register.

b r3

c r4
r2 e

r1 f

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 15



Graph Coloring Example (2)

• Now we assign colors . . . er, . . . registers to: f, e, b, c, d, a in that
order.

• At each step, guaranteed there’s a free register.

b r3

c r4

d r3

r2 e

r1 f

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 15



Graph Coloring Example (2)

• Now we assign colors . . . er, . . . registers to: f, e, b, c, d, a in that
order.

• At each step, guaranteed there’s a free register.

a r2

b r3

c r4

d r3

r2 e

r1 f

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 15



Spilling

• What if during simplification we get to a state where all nodes have
k or more neighbors?

• Example: try to find a 3-coloring of the RIG we’ve been using. After
removing a, we get

b

c

d

e

f

• . . . and now we are stuck, since all nodes have ≥ 3 neighbors.

• So, pick a node as a candidate for spilling, that is, to reside in mem-
ory.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 16



Example of Spilling

• Assume that f is picked as a candidate. When we remove it from
the graph:

b

c

d

e

• Simplification now succeeds. We end up with the stack

[e, c, b, d, f, a ]

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 17



Example of Spilling (II)

• On the assignment phase we get to the point when we have to assign
a color to f

• Sometimes, it just happens that among the 4 neighbors of f we use
< 3 colors (optimistic coloring) . . .

b r3

c r4

d r3

r2 e

?? f

• . . . but not this time.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 18



Example of Spilling (III)

• Since optimistic coloring failed we must spill register f: Allocate a
memory location call it fa as the home of f (typically in the current
stack frame).

• Before each operation that uses f , insert

f := *fa

• After each operation that defines (assigns to) f , insert

*fa := f

• This gives us:

A: a := b + c C: b := d + e

d := -a e := e - 1

f := *fa if e <= 0 jump E

e := d + f f := *fa

if e >= 0 jump C D: b := f + c

B: f := 2 * e if b <= c jump A

*fa := f E:

jump D

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 19



Recomputing Liveness Information

a := b + c

d := -a

f := *fa

e := d + f

e < 0

{b, c, fX}
{a, c, fX}
{c, d, fX}
{c, d, f}

{c, d, e, fX}

f := 2 * e

*fa := f

{c, e}

{c, f} b := d + e

e := e - 1

e > 0

{c, d, e, fX}

{b, c, e, fX}

{b, c, e, fX}

f := *fa

b := f + c

b > c

{c, fX}

{c, f}

{b, c, fX}
{b}

{b}

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 20



A New RIG

• The new liveness information is almost as before, except that that
f is live only

– Between an f := *fa and the next instruction, and

– Between a store f, fa and the preceding instruction.

• That is, spilling reduces the live range of f, and thus the registers
it interferes with, giving us this RIG:

a

b

c

d

e

f

• And this graph is 3-colorable (left to the reader).

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 21



What to Spill?

• In general, additional spills might be required to allow a coloring.

• The tricky part is deciding what to spill. Possible heuristics:

– Spill temporaries with most conflicts

– Spill temporaries with few definitions and uses

– Avoid spilling in inner loops

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 22



Caches

• Compilers are very good at managing registers (much better than
programmers: the C register declaration is really obsolete).

• Caches are another matter. The problem is still left to program-
mers, and it is still an open question whether compilers can do much
in general to improve performance

• But they can (and a few do) perform some simple cache optimization

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 23



Cache Optimization

• Consider the loop

for(j = 1; j < 10; j += 1)

for(i = 1; i < 1000000; i += 1)

a[i] *= b[i]

• Why does this have terrible cache performance?

• On the other hand,

for(i = 1; i < 1000000; i += 1)

for(j = 1; j < 10; j += 1)

a[i] *= b[i]

computes the same thing, but with much better (possibly 10x) per-
formance [again why?].

• Compilers can do this: loop interchange.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 24



Cache Optimization (II)

• Other kinds of memory layout decisions possible, such as padding
rows of a matrix with extra bytes to avoid cache conflicts when
traversing a column (or row in FORTRAN) of a matrix. [Why might
that help?]

• Prefetching instructions on some hardware can inform cache of an-
ticipated future memory fetches so that they can proceed in par-
allel. Again, it is possible for compilers to supply these to a limited
extent.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 25



Summary

• Both because it eases code generation, greatly improves perfor-
mance, and because it is difficult for programmers to do it for them-
selves, register allocation is a “must have” optimization in production
compilers for standard procedural languages.

• Graph coloring is a powerful register allocation scheme that compil-
ers can apply automatically

• Good cache management could give even larger payoffs, but so far
is difficult.

Last modified: Mon Apr 29 14:08:59 2019 CS164: Lecture #38 26


	Lecture 38: Register Allocation
	The Memory Hierarchy
	Managing the Memory Hierarchy
	The Register Allocation Problem 
	An Example
	Basic Register Allocation Idea
	Going Global: Allocation in CFGs (I)
	Allocation in CFGs (II): Register Interference Graphs
	Allocation in CFGs (III): Graph Coloring
	Graph Coloring: Example
	Allocation in CFGs (III): Computing Graph Colorings
	Graph Coloring Heuristic: Motivation
	Graph Coloring Heuristic
	Example of Using the Heuristic (I)
	Graph Coloring Example (2)
	Spilling
	Example of Spilling
	Example of Spilling (II)
	Example of Spilling (III)
	Recomputing Liveness Information
	A New RIG
	What to Spill?
	Caches
	Cache Optimization
	Cache Optimization (II)
	Summary

